2009宁夏中考数学试题

别妄想泡我
983次浏览
2020年09月07日 05:32
最佳经验
本文由作者推荐

盐城人事考试网-校长先进事迹材料



宁夏回族自治区2009年初中毕业暨高中阶段招生
数 学 试 题
注意事项:
1.考试时间120分钟,全卷总分120分.
2.答题前将密封线内的项目填写清楚.
3.答卷一律使用黑、蓝钢笔或圆珠笔.
4.凡使用答题卡的考生,答卷前务必将答题卡上的有关项目填写清楚.选择题的每小题选
出答案后,用 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再
选涂其他答案.不使用答题卡 的考生,将选择题的答案答在试卷上.
一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)
1.下列运算正确的是( )
623
412
A.
a
3
·aa
B.
(6a)(2a)3a

C.
(a2)
2
a
2
4
D.
2a3aa

2.某旅游景点三月份共接待游客25万人次,五月份共接待 游客64万人次,设每月的平均
增长率为
x
,则可列方程为( )
A.
25(1x)
2
64
B.
25(1x)
2
64

C.
64(1x)
2
25
D.
64(1x)
2
25

3.把不等式组


1 1 1
0
1
0
1
0
A. B. C. D.
4.某班抽 取6名同学参加体能测试,成绩如下:85,95,85,80,80,85.下列表述错误
..

1
0
1


2x11

x2≤3
的解集表示在数轴上,下列选项正确的是( )
1
的是( )
A.众数是85 B.平均数是85 C.中位数是80 D.极差是15
5.一次函数
y2x3
的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为( )
A.
24π
B.
32π
C.
36π
D.
48π








6
4
主视图
6
4
左视图
(6题图)
4
俯视图
(7题图)



7.在
44
的正方形网格中,已将图中的四个 小正方形涂上阴影(如图),若再从其余小正
方形中任选一个也涂上阴影,使得整个阴影部分组成的图形 成轴对称图形.那么符合条件的
小正方形共有( )
A.1个 B.2个 C.3个 D.4个
y
2
8.二次函数< br>yaxbxc(a0)
的图象如图所示,对称
轴是直线
x1
,则下列四个结论错误的是( )
..
A.
c0
B.
2ab0

C.
b
2
4ac0
D.
abc0

二、填空题(每小题3分,共24分)
9.分解因式:
m
3
mn
2


10.在
Rt△ABC
中,
C90°,AB3,BC2
,则
cosA
的值是 .
11.已知:
ab
3
2
1

1
O 1
x
(8题图)

ab1
,化简
(a2)(b2)
的结果是 .
12.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获
利 5%”.你认为售货员应标在标签上的价格为 元.
13.用一个半径为6,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥的高
为 .
14.如图,梯形
ABCD
的两条对角线交于点
E
,图中面积相 等的三角形共有
C
A
对.
A
D

E

O

B C
B C
A B
D

(14题图)
(16题图)
(15题图)


15.如图,
△ABC
的周长为32,且
ABAC,ADBC

D

△ACD
的周长为24,
那么
AD
的长为 .
16.如图,
⊙O
是边长为2的等边三角形
ABC< br>的内切圆,则图中阴影部分的面积
为 .
三、解答题(共24分)
17.(6分)

1

计算:
12(2009)< br>

2

0
1
31











18.(6分)
解分式方程:








19.(6分)
已知正比例函数
yk
1
x
(k
1
0)
与反比例函数
y
A< br>的坐标为
(2,1)

1
x3

x
3x
2

k
2
x
(k
2
0)
的图象交于
A、B
两点,点(1)求正比例函数、反比例函数的表达式;
(2)求点
B
的坐标.









20.(6分)
桌子上放有质地均匀,反面相同的4张卡片.正面分别标有数字1、2、3、 4,将这些卡片
反面朝上洗匀后放在桌面上,先从中任意抽出1张卡片,用卡片上所标的数字作为十位上 的
数字,将取出的卡片反面朝上放回洗匀;再从中任意抽取1张卡片,用卡片上所标的数字作
为 个位数字.试用列表或画树状图的方法分析,组成的两位数恰好能被3整除的概率是多
少?













四、解答题(48分)
21.(6分)
在“ 首届中国西部(银川)房·车生活文化节”期间,某汽车经销商推出
A、B、C、D

种型号的小轿车共1000辆进行展销.
C
型号轿车销售的成交率为50%,其它型号轿车的销
售情况绘制在图1和图2两幅尚不完整的统计图中.
(1)参加展销的
D
型号轿车有多少辆?
(2)请你将图2的统计图补充完整;
(3)通过计算说明,哪一种型号的轿车销售情况最好?
(4)若对已售出轿车进行抽奖,现 将已售出
A、B、C、D
四种型号轿车的发票(一车一
票)放到一起,从中随机抽取一 张,求抽到
A
型号轿车发票的概率.














22.(6分)
如图:在
Rt△ABC
中,
ACB90°
CD

AB
边上的中线,将
△ADC
沿
AC
边所在
的直线折叠,使点
D
落在点
E
处,得四边形
ABCE

求证:
EC∥AB

















A
E
C
各型号参展轿车数的百分比
已售出轿车辆
A
35%
D
B
C
20%
20%
(图1)
200
168
150
100
50
0
130
98
A B C D
(图2)
型号
D
B




23.(8分) ,BC
已知:如图,
AB

⊙O
的直径,
ABAC< br>交
⊙O
于点
D

AC

⊙O
于点< br>E,BAC45°

A
(1)求
EBC
的度数;
(2)求证:
BDCD















24.(8分)
如图,抛物线
y
1
2
x
2
O
E
B
D
C
2
2
x2

x
轴 交于
A、B
两点,与
y
轴交于
C
点.
(1)求
A、B、C
三点的坐标;
(2)证明
△ABC
为直角三角形;
(3)在抛物线上除
C
点外,是否还存在另外一个点
P
,使
△ABP
是直角三角形,若存在,请求出点
P
的坐标,若不存在,请说明理由.
y


C















A O
B
x




25.(10分)
如图1、图2,是一款家用的垃圾桶 ,踏板
AB
(与地面平行)或绕定点
P
(固定在垃圾桶
底部的某一位 置)上下转动(转动过程中始终保持
APA

P,BPB

P< br>).通过向下踩踏

A

A

(与地面接触点)使点
B
上升到点
B

,与此同时传动杆
BH
运动到B

H

的位置,

H
绕固定点
D< br>旋转(
DH
为旋转半径)至点
H

,从而使桶盖打开一个张角
HDH


如图3,桶盖打开后,传动杆
H

B

所在的直线分别与水平直线
AB、DH
垂直,垂足为点
M、C< br>,设
H

C
=
B

M
.测得
AP6cm,PB12cm,DH

8cm
.要使桶盖张开的角
度< br>HDH

不小于
60°
,那么踏板
AB
离地面的高 度至少等于多少
cm
?(结果保留两位有
效数字)
(参考数据:
2≈1.41,3≈1.73

H′
H
D
B′
A

A′
P
B
(图1)
(图2)






















H′
H
C
D
B′
A
A′
P
M
B
(图3)




26.(10分)
已知:等边三角 形
ABC
的边长为4厘米,长为1厘米的线段
MN

△ABC
的边
AB
上沿
(运动开始时,点
M
与点
A
重合, 点
N
到达点
B

AB
方向以1厘米秒的速度向
B< br>点运动
运动终止),过点
M、N
分别作
AB
边的垂线,与△ABC
的其它边交于
P、Q
两点,线段
MN
运动的时间为t
秒.
(1)线段
MN
在运动的过程中,
t
为何值时 ,四边形
MNQP
恰为矩形?并求出该矩形的面
积;
(2)线段
M N
在运动的过程中,四边形
MNQP
的面积为
S
,运动的时间为t
.求四边形
MNQP
的面积
S
随运动时间
t
变化的函数关系式,并写出自变量
t
的取值范围.































A M
C
Q
P
B
N




宁夏回族自治区2009年初中毕业暨高中阶段招生
数学试卷参考答案
一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)
题号
1 2 3 4 5 6 7 9
D A B
二、填空题(每小题3分,共24分)
题号
答案
9
m(mn)(mn)

答案
C
11 12
120
B
13
42

A
14
3
C
15
8
D
16
3
1
3
π

10
5
3

2
三、解答题(共24分)
17.(6分)计算:
解:原式=
231231
······················ ·················································· ············· 4分
=
33
················· ·················································· ·················································· ······ 6分
18.(6分)解分式方程:
解:去分母得:
1x2(x3)
···················· ·················································· ·············· 3分
整理方程得:
3x7

x< br>7
3
····································· ·················································· ···································· 5分
7
3
经检验
x
是原方程的解.
7
3

原方程的解为
x
. ············· ·················································· ······························· 6分
19.(6分)
解:(1)把点
A(2,1)
分别代入
yk
1
x
y
k
1

1
2
k
2
x


k
2
2
. ······················· ·················································· ······························· 2分
1
2
x ,y
2
x

正比例函数、反比例函数的表达式为:
y
. ········································· 3分
1

yx


x
1
2

x< br>2
2

2
(2)由方程组







y
1
1

y
2< br>1

y
2

x

B
点坐标是
(2,1)
. ································· ·················································· ············ 6分
20.(6分)



解:列表:
个位数
十位数
1
2
3
4

树状图:



1
2
开始
3
4
1
11
21
31
41
2
12
22
32
42
3
13
23
33
43
4
14
24
34
44
······································ ·············· 3分
1

2 3 4 1 2 3 4
1
2
3
4 1
2
3
4
11 12 13 14 21 22 23 24 31
32 33 34 41
42 43
44


能被3整除的两位数的概率是
5
16
. ·················································· ························· 6分
四、解答题(共48分)
21(6分)
解:(1)
100025%250
(辆) ······ ·················································· ······················· 1分
(2)如图,(
100020%50%100
) ·············· 2分
销售轿车辆数
(3)四种型号轿车的成交率:
200
168
16898
A:100%48%B:100%49%

130
150
350200
98
100
100
130
C:50%

D:100%52%

250
··························· 4分

D种型号的轿车销售情况最好. ·
168
16898100130

168
496

21
62
50
0
A B C D
型号
(4).

抽到A型号轿车发票的概率为
21
62
. ·········· ·················································· ············· 6分
22.(6分)
证明:
CD
AB
边上的中线,且
ACB90°

CDAD

CADACD
. ······························ ·················································· ·················· 2分

△ACE
是由
△ADC
沿
AC
边所在的直线折叠而成的,
ECAACD
. ·· ·················································· ··············································· 4分
ECACAD
. ······························ ·················································· ··················· 5分
EC∥AB
. ··········· ·················································· ················································ 6分
23.(8分)
(1)解:
AB

⊙O
的直径,
AEB90°

A

BAC45°

ABE45°


B
O
E
D
C




ABAC

ABCC67.5°

EBC22.5°
. ····· ·················································· ·············································· 4分
(2)证明:连结
AD

AB

⊙O
的直径,
ADB90°

ADBC


ABAC

BDCD
. ············· ·················································· ·············································· 8分
24.(8分)
解:(1)

抛物线
y
1
2
x
2
2
2
x2

x
轴交于
A 、B
两点,

1
2
2
x
2
2
2
x20


x2x40

解之得:
x
1
2,x
2
22

. ·················································· ············· 2分
0)、B(22,0)


A、B的坐标为
A(2,
1
2
2
2

x0
代入
yx
2
····························· ······ 3分
x2
,得
C
点的坐标为(0,2)·
(2)
AC
22
6,BC23,AB32

2
ABACBC


ACB90°

△ABC
是直角三角形. ····························· ·················································· ·············· 6分
(3)将
y2
代入
y
1
2
x
2
2
2
x2


< br>1
2
x
2
2
2
x22,

x
1
0,x
2
2

P
点坐标为
(2,2)
. ····················· ·················································· ························· 8分
25.(10分)
过点A


A

NAB
垂足为
N
点,

Rt△H

CD
中,




HDH

不小于
60°


H
C
H

D
≥sin60
3
2

H
H′
C
D

H

C≥
3
2
······································· 5分
H

D43
·
B′
A
N
A′
P
M
B
············································· 6分
B

MH

C≥43
·
Rt△A

NP∽Rt△B

MP

A

NA

P



BMB P
A

N
A

P·B

M
B

P

643
12
················· ········································· 9分
 23≈3.5cm
·
································· ································10分

踏板
AB
离地面的高度至少等于3.5cm. ·
26.(10分)
(1)过点
C

CDAB
,垂足为
D


AD2


MN
运动到被
CD
垂直 平分时,四边形
MNQP
是矩形,

AM
t
3
2
3
2
C
P Q
时,四边形
MNQP
是矩形,
A
M
D
N
B
秒时,四边形
MNQP
是矩形.
3
2
3

PMAMtan60°=
S
四边 形MNQP

3
3
························· ·················································· ························· 4分
2
C
(2)


0t1
时,
S
四边形MNQP


1

3t
2

1
2
(PMQN·)MN

Q
3(t1)



P
3t
3
2
················· ············································· 6分
A M N
C
Q
B


1≤t≤2

1
S
四边形MNQP
(PMQN·)MN

2
P


1
3
2

3t2

3(3t)

·1


3
· ·················································· ················· 8分
A M
N
B





2t3
时,
S
四边 形MNQP


1
1
2
(PMQN·)MN

3(4t)



C
P

3(3t)
2

7
2
Q
A
M
N
B
3t
··················· ··································· 10分
3
·











电气工程专业排名-公司年会祝福语


沈阳一中-生日快乐祝福


仙湖植物园-家访总结


做个有道德的人作文-三国武将排行榜


洛阳理工学院分数线-除四害工作计划


武汉美术网-军训自我鉴定


启示作文-离开雷锋的日子观后感


周瑜简介-读书报告范文