部编版小学数学教案范文大全合集

别妄想泡我
770次浏览
2020年09月07日 14:44
最佳经验
本文由作者推荐

深圳火车票代售点-母亲节资料



部编版小学数学教案范文大全合集


下面是为大家提供与初中数学教案相关的所有资讯,希望我
们所做的能让您感到满意!
部编版小学数学教案优秀范文一
(一)创设情境 导入新课
不利用工具,请你将一张用纸片做的角分成两个相等的角。
你有什么办法?
如果前面活动中的纸片换成木板、钢板等没法折的角,又该
怎么办呢?
设计目的:能聚拢学生的思维为新课的开展创造了良好的教
学氛围。
(二)合作交流 探究新知
(活动一)探究角平分仪的原理。具体过程如下:
播放奥巴马访问我国的录像资料------引出雨伞-----观察它的
截面图,使学生认清其 中的边角关系-----引出角平分线;并且运
用几何画板对伞的开合进行动态演示,让学生直观感受伞 面形成


的角与主杆的关系----- 让学生设计制作角平分仪;并利用以前所
学的知识寻找理论上的依据,说明这个仪器的制作原理。
设计目的:用生活中的实例感知。以最近大事作引入点,以
最常见的事物为载体,让学生感 受到生活中处处都有数学,认识
到数学的价值。其中设计制作角平分仪,可培养学生的创造力和
成就感以及学习数学的兴趣。使学生很轻松的完成活动二。
(活动二)通过上述探究,能否总结出 尺规作已知角的平分线
的一般方法.自己动手做做看.然后与同伴交流操作心得.
分小组 完成这项活动,教师可参与到学生活动中,及时发现
问题,给予启发和指导,使讲评更具有针对性。
讨论结果展示: 教师根据学生的叙述,利用多媒体课件演
示作已知角的平分线的方法:
已知:∠AO B.
求作:∠AOB的平分线.
作法:
(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、
N.
(2)分别以M、N为圆心,大于12MN的长为半径作弧.两弧
在∠AOB内部交于点C.


(3)作射线OC,射线OC即为所求.
设计目的:使学生能更直观地理解画法,提高学习数学的兴
趣。
议一议:
1.在上面作法的第二步中,去掉“大于 MN的长”这个条件行
吗?
2.第二步中所作的两弧交点一定在∠AOB的内部吗?
设计这两个问题的目的在于加深对角的平分线的作法的理
解,培养数学严密性的良好学习习惯。
学生讨论结果总结:
1.去掉“大于 MN的长”这个条件,所作的两弧可能没有交
点,所以就找不到角的平分线.
2.若分别以M、N为圆心,大于 MN的长为半径画两弧,两
弧的交点可能在∠AOB•的内部,也可 能在∠AOB的外部,而我
们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到
的 射线就不是∠AOB的平分线了.
3.角的平分线是一条射线.它不是线段,也不是直线,•所以
第二步中的两个限制缺一不可.


4.这种作法的可行性可以通过全等三角形来证明.
(活动三)探究角平分线的性质
思考:已知一角及其角平分线添加辅助线构成全等三角形;
构成全等的直角三角形。这样的三角形有多少对?
这样设计的目的是加深对全等的认识。
部编版小学数学教案优秀范文二
一、说教材:
1.本节课的主要内容:
探究数据的离散程度及认识“极差”“方差”“标准差”三个量度
及其实际意义。主要是运用具体的生活情境,让学生感受到当两
组数据的“平均水平” 相近时,而实 际问题中具体意义却千差万
别,因而必须研究数据的波动状况,分析数据的差异,逐步抽象
出刻 画数据离散程度的“极差”“方差”“标准差”的三个量度,并掌
握利用计算器求方差和标准差。
2.地位作用:
纵观*的教材安排体系,以数据“收集—表示—处理—评判”
的顺序展开。数据的波动是对一组数据变化的趋势进行评判,通
过结果评判形成决策的教学,是数据处 理解决现实情景问题必不


可少的重要环节,是*学习的最终目的和落脚点。通过本节的学
习为处理各种较为复杂的现实情境的数据问题打下基础。
3.教学目标:
依据课标对本节知识的提出的“探索如何表示一组数据的离
散程度,会计算极差和方差,并会用它们表示 数据的离散程度”
要求,确定以下目标:
(1)知识目标:a、掌握刻画数据离散程度的 “极差”“方差”“标
准差”三个量度。b、会动手和利用计算器计算“方差”“标准差”。
(2)过程与方法目标:a.经历感受表示数据离散程度的三个量
度的探索过程(“极差”“方差”“标 准差)。b.通过数据分析的学习,
培养学生探索数学规律的能力(“平均数相同的两组数据,极差越< br>小,波动越小,越稳定”;“一组数据方差越小,波动越小,越稳定”)c.
突出关键环节,判断 两组数据稳定性就是抓住计算其方差进行比
较。d.在具体实例中体会样本估计总体的思想。
(3)情感目标:通过解决生活中的数学问题,培养学生认真参
与、积极交流的主体意识,通过数据分析 ,培养学生善于用数学
的眼光认识世界,进一步增强学生的数学素养。
4.重点与难点:重点:
理解刻画数据离散程度的三个量度——极差、标准差和方
差,会 计算方差的数值,并在具体问题情境中加以应用。


难点:理解极差、方差的含义及方差的计算公式,并准确运
用其解决实际问题。
二、说教法
教学过程是教师和学生共同参与的过程,启发学生自主性学
习,充分调动学生 的积极性、主动性;有效地渗透数学思想方法,
提高学生素质。根据这一原则和本节教学目标,我采用如 下的教
学方法:
1.引导发现法。数据分析的三个量度,是十分抽象的概念,
要 引出三个概念,必须借助学生熟悉的生活情景。我设计了一个
连接奥运会中韩射箭运动员的场景,并用表 格记录环数,让学生
运用已有的知识进行评判,通过学习分析具体的生活实例来发现
当两组数据 的“平均水平”相近,无法用平均数来刻画时,引入一
种新的量度,逐步抽象出“极差”“方差”“标准 差”。以此,打开教
学突出教学难点的缺口,充分激活学生思维,调动其主动性和积
极性。
2.比较法。在极差和方差的应用中,让学生在比较中发现用
已有的知识还是难以准确的刻 画一组数据的离散程度,从而引入
新的量度。
3.练习巩固法。通过练习,强化巩固概念 ,熟练计算器的操
作。进一步理解本节知识对于实际问题的意义。这样更能突破重


点、解决难点,在运算中深刻理解“极差”“方差”“标准差”的内涵。
使学生的分析问题和解决问题 的能力得到进一步的提高。
4.选用一个贴近学生生活实际的背景。通过一个实际问题情
境的导入和比较,抓住重点,突破难点,让学生直观地估测甲、
乙两名选手的成绩,回顾有关数据的另一 个量度 “平均水平”,
同时让学生初步体会“平均水平”相近,但两者的离散程度未必相
同, 仅有“平均水平”还难以准确地刻画一组数据,从而顺理成章
地引入刻画数据离散程度的一个量度—极差 ;然后,设计了一个
“做一做”,因承上面场景的情境,增加了一名选手丙,旨在通过
丙与甲、 乙的对比,发现有时平均水平相近,极差也相同,但数
据的离散程度仍然存在差异,仅用极差还难以精确 刻画一组数据
的离散程度,从而引入刻画一组数据离散程度的另外两个量度—
标准差和方差。指 导学生动手计算平均数、极差、方差、标准差,
并依次比较,让学生在比较中发现问题。
三、说学法:
教给学生方法比教给学生知识更重要。本节课注重调动学生
积极思考、主动 探索,尽可能地增加学生参与教学活动的时间和
空间,我主要设计的学法指导是:
(1) 引导观察分析法:链接运动员设计场景,引导学生观察把
环(用眼),关注收集的数据,积极思考,分析 两名运动员设计的


稳定程度(动脑),指导学生动手计算(动手)。让学生学会观察问< br>题,分析问题和解决问题。
(2)引导比较鉴别法:在教学过程中,每出现一个新概念或一
个新公式,采取的方法是:一是引导学生读,二是解释关键词语,
三是让学生动手计算、巩固知 识,加深理解概念的内涵,四是回
头看实际情形,认识数据的变化规律,在实际背景中比较形成正
确的决策。
(3)引导练习巩固:注重“做一做”的练习中强化、观察、切入
公式特点 、计算、分析、判断的方法的巩固,通过强化加深学生
对三个量度的理解和应用。让学生知道数学重在运 用,从而检验
知识的应用情况,找出未掌握的内容和知识。
(4)引导自学法:学生自学掌握计数器计算方差和标准差的操
作功能。
四、说教学程序:
1.创设情境,导入新课:
1、展示情景(链接奥运会中韩运动员设计的情景)。
2、学生观察阅读分析(描述运动员射箭的平均水平)。
3、分析思考寻求解决方案(观察表格数据求平均数)。


4、通过对以上问题的分 析发现在实际生活中除了关注数据
的“平均水平”以外,还要关注数据的离散程度。(引出本课课题——数据的波动)
2、新课:
(由学生已经掌握的知识来引出课题,吸引学生的注意力和
提高学习本节知识的兴趣)
1、概念介绍:
a、数据的离散程度(是相对于平均水平的偏离情况);
b、极差(极差是刻画数据的离散程度的一个统计量,是一组
数据中数据与最小数据的差);
c、练习巩固计算极差;
2、展示丙运动员加入的情景,让学生在乙丙两人中挑选,
计算 中发现平均数极差相同,让学生产生新的困惑。引入本节的
第二个知识点——方差和标准差。
3、引进概念
a、概念“方差”(各个数据与平均数之差的平方的平均数),给
出计算公式:
初中数学说课稿:数据的波动


b、给出“标准差”的概念(方差的算术平方根)。
c、学生相互交流学习操作计算器计算方差和标准差。
4、引导学生理解一组数据的 极差、方差、标准差越小,这
组数据就越稳定的内涵(通过数据与图比较说明,使抽象概念具
体 化)。
5、计算引例中的方差和标准差。(作用:一是巩固“方差”的
计算方法;二是用 方差来刻画引例中的数据离散程度,加深学生
对方差意义的理解。三是会用运“方差”来解决实际问题的 方法)。
3、巩固练习:
1、样本4、7、5、2、3、8、5、6的平均数是_ _____,众数
是_____,极差是____,方差是________,标准差是______。 (通
过这组练习强化概念和计算方法的运用)
2、P—235随堂练习(1)(通过这道习题巩固运用所学知识分析
解决实际问题的能力)
4、小结谈体会:教师引导回顾所学概念;让学生谈学习、运
用的体会。
5、布置作业:P—199(1)(2)(3-选作题):
五.说板书设计


板书设计为表格式,这样的板书简明清楚,重点突出,加深
学生对重点知识 的理解和掌握,同时便于比较和记忆,有利于提
高教学效果。
部编版小学数学教案优秀范文三
一、素质教育目标
(一)知识教学点
使学生知道当直角三角形的锐角固定时,它的对边、邻边与
斜边的比值也都固定这一事实.
(二)能力训练点
逐步培养学生会观察、比较、分析、概括等逻辑思维能力.
(三)德育渗透点
引导学生探索、发现,以培养学生独立思考、勇于创新的精
神和良好的学习习惯.
二、教学重点、难点
1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边
的比值也是固定的这一事实.


2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边
的比值也是固 定的事实,关键在于教师引导学生比较、分析,得
出结论.
三、教学步骤
(一)明确目标
1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间
距离为多少米?
2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间
的距离为多少?
3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为
多少?
4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜
角∠CAB为多少度?
前两 个问题学生很容易回答.这两个问题的设计主要是引起
学生的回忆,并使学生意识到,*要用到这些知识 .但后两个问题
的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生
来说,起到激起 学生的学习兴趣的作用.同时使学生对*所要学习
的内容的特点有一个初步的了解,有些问题单靠勾股定 理或含
30°角的直角三角形和等腰直角三角形的知识是不能解决的,解
决这类问题,关键在于 找到一种新方法,求出一条边或一个未知


锐角,只要做到这一点,有关直角三角形的其他 未知边角就可用
学过的知识全部求出来.
通过四个例子引出课题.
(二)整体感知
1.请每一位同学拿出自己的三角板,分别测量并计算30°、
45°、 60°角的对边、邻边与斜边的比值.
学生很快便会回答结果:无论三角尺大小如何,其比值是一
个固定的值.程度较好的学生还会想到,以后在这些特殊直角三
角形中,只要知道其中一边长, 就可求出其他未知边的长.
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形
大小如何,所求的比值是固定的.大 部分学生可能会想到,当锐
角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要
研究的知识有了整体感知,唤起学生的求知欲 ,大胆地探索新知.
(三)重点、难点的学习与目标完成过程
1.通过动手实验, 学生会猜想到“无论直角三角形的锐角为何
值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎 样证


明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生
可能能解 决它.因此教师此时应让学生展开讨论,独立完成.
2.学生经过研究,也许能解决这个问题.若不能解决,教师可
适当引导:
若一组直角三角形有一个锐角相等,可以把其
顶点A1,A2,A3重合在一起,记作A,并使直 角边AC1,
AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在
另一条直线上.这样同学们能解决这个问题吗?引导学生独立证
明:易知,B1C1∥B2C2∥B3C 3……,
∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的对边、邻边与斜边的比值,是一个固定值.
通过引导,使学生自己独立掌握了重点,达到知识教学目标,
同时培养学生能力,进行了德育渗透.
而前面导课中动手实验的设计,实际上为突破难点而设计.
这一设计同时起到培养学生思维能力的作用.
练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边
的比值都能求出来.
(四)总结与扩展


1.引导学生作知识总结:本节课在复习勾股定理及含30°角
直角三角形的性质基础上,通过动手实验、证明,我们发现,只
要直角三角形的锐角固定,它的 对边、邻边与斜边的比值也是固
定的.
教师可适当补充:本节课经过同学们自己动手实验 ,大胆猜
测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维
能力又有所提高,希望 大家发扬这种创新精神,变被动学知识为
主动发现问题,培养自己的创新意识.
2.扩展 :当锐角为30°时,它的对边与斜边比值我们知道.今
天我们又发现,锐角任意时,它的对边与斜边的 比值也是固定的.
如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.
看来这个比 值很重要,下节课我们就着重研究这个“比值”,有兴
趣的同学可以提前预习一下.通过这种扩展,不仅 对正、余弦概
念有了初步印象,同时又激发了学生的兴趣.
四、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课
后应要求学生预习正余弦概念.
五、板书设计
篇三:《正弦和余弦(二)》
一、素质教育目标


(一)知识教学点
使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正
弦)值之间的关系.
(二)能力训练点
逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑
思维能力.
(三)德育渗透点
培养学生独立思考、勇于创新的精神.
二、教学重点、难点
1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的
余弦(正弦)值之间的关系并会应用.
2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间
的关系的应用.
三、教学步骤
(一)明确目标
1.复习提问
(1)、 什么是∠A的正弦、什么是∠A的余弦,结合图形请学
生回答.因为正弦、余弦的概念是研究本课内容的 知识基础,请


中下学生回答,从中可以了解教学班还有多少人不清楚的,可以
采 取适当的补救措施.
(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).
(3)请同学们观察,从中发现什么特征?学生一定会回答
“sin30°=cos60° ,sin45°=cos45°,sin60°=cos30°,这三个角的正弦
值等于它们余角的余弦 值”.
2.导入新课
根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)
值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题.
部编版小学数学教案范文大全合集

北宋皇帝列表-湖北高考志愿填报系统


浙江财经大学录取分数线-中国银行协会


蝴蝶梦仙阁-太傻网


2015政府工作报告-艺术高考网


江苏省栟茶高级中学-初三历史教学计划


实验总结-上海大学研究生部


风筝教学设计-圣诞快乐英文


江西会考-个人工作总结开头