趣味数学10道题
安徽省人口职业学院-建筑工地实习周记
趣味数学10道题
1.有人编写了一个程序, 从1开始,
交替做乘法或加
法, (第一次可以是加法,也可以是乘法), 每次加法,
将
上次运算结果加2或是加3;每次乘法,将上次运算结果乘2
或乘3, 例如30,
可以这样得到: 1 +3
=4*2=8+2=10*3=30,
请问怎样可以得到:2的100次+2的97次-2
解答:1+3=4+2=2的3次-2=2的3次+2-2=(2的3次
+2-2)*2=……==2的
100次+2的97次-2的97次=2的100
次+2的97次-2的97次+2=2的100次+2
的97次-2的97次
+2+2=……=2的100次+2的97次-2
2.下诗出于清朝数学家徐子云的著作,请算出诗中有多少
僧人?
巍巍古寺在云中,不知寺内多少僧。
三百六十四只碗,看看用尽不差争。
三人共食一只碗,四人共吃一碗羹。
请问先生明算者,算来寺内几多僧?
解答:三人共食一只碗:则吃饭时一人用三分之一个碗,
四人共吃一碗羹:则吃羹时一人用四分之一个碗,
两项合计,则每人用13+14=712个碗,
设共有和尚X人,依题意得:
712X=364
解之得,X=624
第 1 页
3.两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起
步的那一瞬间,一辆自行车车把上
的一只苍蝇,开始向另一
辆自行车径直飞去。它一到达另一辆自行车车把,就立即转
向往回飞行
。这只苍蝇如此往返,在两辆自行车的车把之间
来回飞行,直到两辆自行车相遇为止。如果每辆自行车都
以
每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞
行,那么,苍蝇总共飞行了多少
英里?
解答:每辆自行车运动的速度是每小时10英里,两者将
在1小时后相遇于2O英里
距离的中点。苍蝇飞行的速度是
每小时15英里,因此在1小时中,它总共飞行了15英里。
4.《孙子算经》是唐初作为“算学”教科书的著名的《算
经十书》之一,共三卷,上卷叙述算筹记数的
制度和乘除法
则,中卷举例说明筹算分数法和开平方法,都是了解中国古
代筹算的重要资料。下
卷收集了一些算术难题,“鸡兔同
笼”问题是其中之一。原题如下:
令有雉(鸡)兔同笼,上
有三十五头,下有九十四足。问雄、兔各几何?
解答:设x为雉数,y为兔数,则有
x+y=b, 2x+4y=a
解之得:y=b2-a,
x=a-(b2-a)
根据这组公式很容易得出原题的答案:兔12只,雉22只。
第 2 页
5.我们大家一起来试营一家有80间套房的旅馆,看看知
识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;
而租金每涨20元,就会失去3位客人。
每间住了人的客房
每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?
解答:日租金360元。
虽然比客满价高出2
00元,因此失去30位客人,但余下
的50位客人还是能给我们带来360*50=18000元的收
入; 扣
除50间房的支出40*50=2019元,每日净赚16000元。而客
满时净利润
只有160*80-40*80=9600元。
6. 数学家维纳的年龄:我今年岁数的立方是个四
位数,
岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、
2、3、4、5、6、7
、8、9全都用上了,维纳的年龄是多少?
解答:设维纳的年龄是x,首先岁数的立方是四位数,这
确定了一个范围。10的立方是1000,20的立方是8000,21
的立方是9261,是
四位数;22的立方是10648;所以10=
7.把1,2,3,4……1986,1987这1
987个自然数均匀排成
一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,
这样
每隔一个数划掉两个数,转圈划下去,问:最后剩下哪
个数。
解答:663
第
3 页
8.在一幅长90厘米,宽40厘米的风景画的四周外围向上
一条宽
度相同的金色纸边,制成一幅挂图,如果要求风景画
的面积是整个挂图面积的百分之72,那么金色纸边
的宽应为
多少?
解答:根据题意有(90+2X)(40+2X)*72%=90*40
(90+2X)(40+2X)=36000.72
3600+180X+80X+4X2=5000
4X2+260X-1400=0
(4X-20)(X+70)=0
得 4x-20=0 X+70=0
4*x=20
X=5
X=-70 不成立
所以X=5CM
9.用黑白两种颜色的皮块缝
制而成的足球,黑色皮块是正
五边形,白色皮块是正六边形,若一个球上共有黑白皮块32
块,
请计算,黑色皮块和白色皮块的块数
解答:等量关系:
白色皮块中与黑色皮块中共用的边数=黑色皮块中与白色
皮块共用的边数
设:有白色皮块x
3x=5(32-x)
解得 x=20
第 4 页
10.抽屉中有十只相同的黑袜子和十只相同的白袜子,假
若你在黑暗中打开抽屉,伸手拿出袜子,请问
至少要拿出几
只袜子,才能确定拿到了一双?
解答:3
11.小赵,小钱,小
孙,小李4人讨论一场足球赛决赛究
竟是哪个队夺冠。小赵说:“D对必败,而C队能胜。”小
钱说:“A队,C队胜于B队败会同时出现。”小孙说:“A
队,B队C队都能胜。”小李说:“A队败
,C队,D队胜的
局面明显。”
他们的话中已说中了哪个队取胜,请问你猜对究竟哪个队
夺冠吗?
解答:小赵,小钱,小孙
,小李4人讨论一场足球赛决赛
究竟是哪个队夺冠。小赵说:“D对必败,而C队能胜。”
小钱
说:“A队,C队胜与B队败会同时出现。”小孙说:
“A队,B队C队都能胜。”小李说:“A队败,
C队,D队
胜的局面明显。”
小赵的话说明 D队败
小钱的话说明 B队败
小孙的话说明 D队败
小李的话说明 A队败
所以,C队胜利
12.如果长度为a,b,c的三条线段能够成三角形,那麽线
第 5 页
段根号a,根号b,根号c是否能够成三角形?
如果一定能构成或一定不能构成,请证明
如果不一定能够,请举例说明.
解答:可以。
不妨假设a最小,c最大,那么abc构成三角形的充要条
件就是a+b>c;
这时√a+√b与√c比较,其实就是
a+b+2&
radic;ab与c比较(两边平方),a+b已经大于c了,
那么显然可以构成三角形。
13.有一位农民遇见魔鬼,魔鬼说:我有一个主意,可以让
你发财!只要你从我身后这座桥走过去,你
的钱就会增加一
倍,走回来又会增加一倍,每过一次桥,你的钱都能增加一
倍,不过你必须保证
每次在你的钱数加倍后要给我a个钢板,
农民大喜,马上过桥,三次过桥后,口袋刚好只有a个钢板,<
br>付给魔鬼,分文不剩,请有含a的单项式表示农民最初口袋
里的钢板数。
解答:设最初钱数为x
2[2(2x-a)-a]-a=0
解方程得x=7a8
14.三个同学放学回家,途中见到一辆黄色汽车,等他们再
往前走时,听说那辆车撞伤一位
老人后竟然逃之夭夭.可是
谁也没记下这辆汽车的车牌号.警察询问这三个中学生时,
第 6
页
他们都说车牌号是一个四位数.其中一个记得这个号码的前
两位相同,另一
个记得这个号码的后两位数字相同,第三个
记得这个四位数恰好是完全平方数,你能确定这辆肇事汽车<
br>的车牌号吗
解答:四位数可以表示成
a×1000+a×100+b×10+b
=a×1100+b×11
=11×(a×100+b)
因为a×100+b必须被11整除,所以a+b=11,带入
上式得
四位数=11×(a×100+(11-a))
=11×(a×99+11)
=11×11×(9a+1)
只要9a+1是完全平方数就行了。
由a=2、3、4、5、6、7、8、9验证得,
9a+1=19、28、27、46、55、64、73。
所以只有a=7一个解;b=4。
因此四位数是7744=11^2×8^2=88×88
15
.已知1加3等于4等于2的2次方,1加3加5等于9
等于3的2次方,1加3加5加7=16等于4
的2次方,1加
3加5加7加9等于25等于5的2次方,等......
<1>仿照上例,计算1加2加3加5加7加...加
第 7 页
99等于?
<2>根据上面规律,请用自然数n(n大于等于1)表
示一般规律。
解答:<1>1+3+5+...+99=50的平方
<2>1+3+5+...+n=[(n-1)2+1]的平方
16.有一次,一只猫
抓了20只老鼠,排成一列。猫宣布了
它的决定:首先将站在奇数位上的老鼠吃掉,接着将剩下的
老师重新按1、2、3、4…编号,再吃掉所有站在奇数位上的
老鼠。如此重复,最后剩下的一只老鼠
将被放生。一只聪明
的老鼠听了,马上选了一个位置,最后剩下的果然是它,猫
将它放走了!
你知道这只聪明的小老鼠站的是第几个位置吗?
解答:排在第16个。第1次能被2整除
的剩下了,第2次
能被4(2的平方)整除的剩下了,第3次能被8(2的3次方)
整除的剩下
了,第4次能被16(2的4次方)整除的剩下了,所
以只有第16个不会被吃掉。
17.1(1*2*3)+1(2*3*4)+1(3*4*5)+…+1(98*99*100)
解答:
1(1*2*3)+1(2*3*4)+1(3*4*5)+…+1(98*99*100)
=(1-12-13)+(12-13-14)+(13-14-15)+......1
9
8-199-1100
=1-1100
第 8 页
=99100
备注:1(1*2*3)=1-12-13
18.小伟和小明交流暑假中
的活动情况,小伟说:“我参
加了科技夏令营,外出一个星期,这七天的日期数之和是84,
你
知道我是几号出发的吗?”小明说:“我假期到舅舅家住
了七天,日期数的和再加月份数也是84,你能
猜出我是几月
几号回家的吗?
解答:第一题:设出发那天为X号
X+X+1+X+2+X+3+X+4+X+5+X+6=84
X=9
小伟是9号出发的。
第二题:因为是暑假里的活动,所以只能是7或者8月份
设回来那天为X号
列示为
7+X+X-1+X-2+X-3+X-4+X-5+X-6=84
或者
8+X+X-1+X-2+X-3+X-4+X-5+X-6=84
第一式解出X=14
第二式结果不为整数
所以只能是7月14号到家
19.某校初一有甲、乙、丙三个班,
甲班比乙班多4个女
生,乙班比丙班多1个女生,如果将甲班的第一组同学调入
第 9 页 <
/p>
乙班,同时将乙班的第一组同学调入丙班,同时将丙班的第
一组同学调入甲班,则
三个班的女生人数恰好相等。已知丙
班第一组有2名女生,问甲、乙两班第一组各有多少女生?
解答:设甲乙两班第一组的女生分别有m和n个
丙班女
生有x个乙班就有x+1个,甲班就有x+5个 平均x+2个
(利
用改变量来计算)丙班:-2+n=(x+2)-x
甲班:+2-m=(x+2)-(x+5) 可以得出 m=5 n=4
20.有一水库,在单位时
间内有一定量的水流量,同时也
向外放水。按现在的放水量,水库中的水可使用40天。因
最近
库区降雨,使流入水库的水量增加20%,如果放水量也
增加10%,那么仍可使用40天。问:如果按
原来的放水量放
水,可使用多少天?
解答: 设水库总水量为x
一天的进水量和出水量分别为
m和n
则有x(n-m)=40=x[n(1+10%)-m(1+20%)]
要求
x[n-m(1+20%)]
可以先化简得n=2m x=40m
带入第二个式子即可得到x=50
天
21.某宾馆先把甲乙两种空调的温度设订为1度,结
果甲
种空调比乙种空调每天多节电27度再对乙种空调进行清洗
设备,使得乙种空调每天的总节
电量是只将温度调高1度后
的节电量的1.1倍而甲种空调的节电量不变这样两种空调每
第
10 页
天共节电405度求只将温度条调高1度后两种空调每天共节
电多少度?
解答:设只将温度调高1度后,甲乙两种空调每天各节电
X,Y度
X-Y=27,
X+1.1Y=405
X=207
Y=180
甲乙两种空调每天各节电207,180度.
22.红棉村有1000公顷荒山,绿化率达80%,
300公顷良田
不需要绿化,今年X公顷河坡地植树绿化率达20%,这样红棉
村所有土地的绿
化率就达到60%,河坡地共有多少公顷?
解答:(x*20%+1000*80%)(1000+300+x)=60%
(0.2*x+800)(1300+x)=0.6
0.2*x+800=780+0.6*x
x=50公顷
23.一张纸厚0.06厘米,地球到月球的距离是3.85*10^5
千米.
小明说,如
果将这张纸裁成两等份,把裁成两等份的纸摞
起来,再裁两等份,如果重复下去,所有纸的高度大于月球
到
地球的距离.
小刚说,我不信小明的说法.
第 11 页
小明的说法是对的吗?为什么?
解答:裁40次就高于3.85*10^5千米
2^40*0.06100000=6.597*10^5千米
小明的说法是对,只是这张纸一定要够大,要不能裁了几
次就裁不了
24.有27颗珍珠,
其中一颗是假的,但外观和真的一样,只
是比真的珍珠轻一点.问:最少用天平称几次(不用砝码),就
一定可以把假的珍珠找出来?
解答:3次
第一次把27颗珍珠分成3等份,取
其中2份放天平两端称
量,如果天平偏斜,则考虑轻的那9颗珍珠,如果不偏斜,则考
虑没有称
量的那9颗;同理,将这9颗珍珠再分成3等份,,取
其中2份放天平两端称量,再次得到3颗可疑的珍
珠,取出
两颗称量,如果天平偏斜,则轻的是次品~否则没称量的是次
品
25.埃
及同中国一样,也是世界上著名的文明古国,古代
埃及人处理分数与众不同,他们一般只使用分子为1的
分数,
例如用13+115表示25,用14+17+128来表示37等
等,现在用90个埃
及分子12,13,14,15,......。
190。191,其中是否再10个数,加上正负号后
使它们的
和为-1,若存在,请写出这10个数,若不存在,请说明理
由。
第 12
页
解答:一解:
-1=-15-16-18-19-110-112-115-118-120-124
二解:
1-12+12-13+13-14+14-15+15-16+16-17+17
-18+
18-19+19-110=1-110
所以:
12+16+112+120+130+142+156+172+190+110=1
即:
-12-16-112-120-130-142-156-172-190-110=
-1
第 13 页