苏教版五年级下学期数学
四六级考试成绩查询-家长会作文
苏教版五年级下学期数学
第一单元 简易方程
1、等式:表示相等关系的式子叫做等式。
2、方程:含有未知数的等式是方程。
3、方程一定是等式。等式不一定是方程。
4、等式的性质:等式两边同时加上或减去同一个数,所得结果仍然是等式。
5、方程的解:使方程左右两边相等的未知数的值。
6、解方程:求方程中未知数的过程。
7、检验
【例】
检验法一:把x=10代入原方程,
左边=60-4×10=20,
右边=20,
左边=右边,
所以,X=10是原方程的解。
检验法二:方程左边=60-4×10=20=方程右边
所以,X=10是方程的解
8、解方程时常用的关系式
一个加数=和-另一个加数
减数=被减数-差
被减数=减数+差
一个因数=积÷另一个因数
除数=被除数÷商
被除数=商×除数
9、列方程解应用题的思路
(1)审题并弄懂题目的已知条件和所求问题。
(2)理清题目的等量关系。
(3)设未知数,一般是把所求的数用X表示。
(4)根据等量关系列出方程
(5)解方程
(6)检验
(7)作答。
注意:解完方程,要养成检验的好习惯。
第二单元 折线统计图
1、复式折线统计图的特点
从复式折线统
计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于
这两组相关数据进行比较。
2、作复式折线统计图步骤
①写标题和统计时间
②注明图例(实线和虚线表示)
③分别描点、标数
④实线和虚线的区分(画线用直尺)。
注意:先画表示实线的统计图
,再画虚线统计图。不能同时描点画线,以免混淆。
第三单元
因数和公倍数
1、因数和倍数
几个非零自然数相乘,每个自然数都叫它们
积的因数,积是这几个自然数的倍数。
因数与倍数是相互依存绝不能孤立的存在。
(1)一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
(2)一个数最小的倍数是它本身,没有最大的倍数。
(3)一个数倍数的个数是无限的。
(4)一个数最大的因数等于这个数最小的倍数。
(5)2
的倍数的特征:个位是0、2、4、6、8。
5的倍数的特征:个位是0或5。
3 的倍数的特征:各位上数字的和一定是3的倍数。
2、奇数和偶数
按照是否是2的倍数可以把自然数分成两类偶数和奇数。
最小的偶数是0。
3、公因数和最大公因数
两个数公有的因数,叫做这两个数的公因数,其中最大的一
个,叫做这两个数的
最大公因数。
(1)A和B两个数的最大公因数常用(A,B)表示。
(2)两个数的公因数是有限的。
(3)公因数只有1的两个数叫作互质数
4、公倍数和最小公倍数
两个数公有的倍数,叫做这两个
数的公倍数,其中最小的一个,叫做这两个数的
最小公倍数。
(1)A和B两个数的最小公倍数常用符号[A,B]表示。
(2)两个数的公倍数是无限的。
(3)两个数的最小公倍数一定是它们的最大公因数的倍数。
5、两个素数的积一定是合数
6、求最大公因数和最小公倍数的方法
(1)列举法
(2)图示法
(3)短除法
7、质因数:如果一个数的因数是质数,这个因数就是它的质因数。
8、分解质因数:把一个合数用质因数相乘的形式表示出来,叫作分解质因数。
第四单元 分数的意义和性质
1、分数的意义
一个物体、一物
体等都可以看作一个整体,把这个整体平均分成若干份,这样的
一份或几份都可以用分数来表示。
2、单位“1”
一个物体、一个计量单位或是一些物体等都可以看作一个整体。
一个整体可以用
自然数1来表示,我们通常把它叫做单位“1”。
3、分数单位:
把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
4、分数与除法的关系
A÷B=(B≠0,除数不能为0,分母也不能够为0)。
5、真分数、假分数和带分数
(1)分子比分母小的分数叫真分数。真分数<1。
(2)分子比分母大或分子和分母相等的分数叫假分数。假分数≧1
(3)带分数由整数和真分数组成的分数。带分数>1.
(4)真分数<1≤假分数
真分数<1<带分数
6、假分数与整数、带分数的互化
(1)假分数化为整数或带分数:用分子÷分母,商作为整数,余数作为分子。
(2)整数化为假分数:用整数乘以分母得分子。
(3)带分数化为假分数:用整数乘以分母加分子,得数就是假分数的分子,分母
不变。
(4)1等于任何分子和分母相同的分数。
7、分数的基本性质
分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
8、公因数、最大公因数
几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。
(1)几个数的公因数只有1,就说这几个数互质。
(2)求两个数的最大公因数的方法
列举法、筛选法、短除法、分解质因数法
(3)最简分数:分数的分
子和分母只有公因数1,像这样的分数叫做最简分数。
9、公倍数、最小公倍数
几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。
(1)求两个数的最小公倍数的方法
列举法、筛选法、短除法、分解质因数法
10、约分和通分
(1)约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(2)通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。
11、分数和小数的互化
(1)小数化为分数:
数小数位数,一位小数,分母是10;两位小数,分母是100……
(2)分数化为小数:
分母是10、100、1000……的分数,可以直接化成小数。
也可以用分子÷分母。
如:34=3÷4=0.75
12、比分数的大小
分母相同,分子大,分数就大;
分子相同,分母小,分数才大。
第五单元 分数的加法和减法
1、分数加法和减法的意义
分数加、减法的意义和整数加、减法的意义相同。
2、
同分母分数加、减法的计算
分母不变,分子相加、减。计算的结果能约分的要约分成最简分数。
3、异分母分数加、减法的计算
先通分,然后按照通分母分数加、减法进行计算。
4、分数加减混合运算
没有括号的,按照从左往右的顺序计算;有括号的,先算括号里面的,再算括号
外面的。
5、分数加法的简算
整数加法的运算定律和在分数加法中同样适用。
第六单元 圆
一、圆
1、圆是由一条曲线围成的平面图形。
2、画圆
(1)针尖固定
的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线
段是半径,通常用字母r表示;通过圆
心并且两端都在圆上的线段是直径,通常用
字母d表示。
(2)用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。
画圆时要注意
:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋
转一周。
3、圆的直径和半径
(1)在同一个圆里,有无数条半径和直径。
(2)在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。
(3)在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d÷2)
6、圆心决定圆的位置,半径决定圆的大小。所以要比较两圆的大小,就是比较两
个圆的直径或
半径。
7、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。
用字母π(读pài)表示。
π是一个无限不循环小数,π=3.141592653……
我们在计算时,一般保留两位小数,取它的近似值3.14。
8、圆的周长
如果用C表示圆的周长,那么C=πd或C = 2πr
9、圆的面积推导
圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即S
长方形
=S
圆
);长方
形的宽是圆的半径(即b=r);长方形的长是圆周长的一半(即a=c2=πr)
。
即:S
长方形
= a × b S
圆
= πr ×
r =
注意:切拼后的长方形的周长比圆的周长多了两条半径。
C
长方形
=2πr+2r=C
圆
+d
10、圆的面积
如果用S
圆
表示圆的面积,那么S
圆=πr
2
。圆的面积是半径平方的π倍。
二、扇形
扇形是由圆心角的两条半径和圆心角所对的弧围成的图形。扇形的大小是由圆心
角决定的。
第七单元 解决问题的策略
1、运用转化的策略可以把不
规则的图形转化成规则的图形,转化前后图形变化了,
但大小不变。
2、计算小数的除法时,可以把小数转化成整数来计算。
3、在计算异分母分数加、减时,可以把异分母分数装化成同分母分数来计算。
4、在进行面积公式推导时,可以把图形转化成已经学过的图形面积来计算。
5、运用转化的策略,从不同的角度灵活的分析问题,可以使复杂的问题简单化。