小学六年级--比和比例知识点梳理
中央戏剧学院官网-经销商协议
复习课:比和比例
知识点一: 比和比例的联系与区别
意义
各部分名称
比
表示两数相除
9:6=1.5
↑↑↑↑
前项比号后项比值
比的前项和后项同时乘或除
以相同的数(0除外),比值
不变。
化简比的依据。
知识点二:比和分数、除法的联系
名称
比
分数
除法
联系
前项
分子
被除数
:(比号)
—(分数线)
后项
分母
除数
比值
分数值
商
比例
表示两个比相等的式子
9:6=3:2
↑
在比例里,两个外项的积等于
两个内项的积。
解比例的依据。
基本性质
(除号)
知识点三:求比值和化简比
求比值
化简比
意义
前项除以后项所得的
商
把两个数的比化简成
最简单的整数比
方法
用前项除以后项
前项
和后项同时乘或
除以相同的数(0除
外),也可以用求比值
的方法,用前项除以
后项,得出一个分数
值。
结果
一个数(是整数、分
数或小数)
一个比
知识点四:正比例和反比例的意义和判断方法
1、 正比例的意
义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相
对应的两个数的比值(商)一
定,这两种量就叫做成正比例的量,它们的关系叫做正比
例关系。正比例的关系式:
y
k
(一定)
x
2、 反比例的意义:两种相关联的量,一种量变化另一种量也随着
变化,如果这两种量中相
对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例
关系。
反比例的关系式:
xyk
(一定)
3、
判断正、反比例的方法:一找二看三判断
(1)
找变量:分析数量关系,确定哪两种量是相关联的量。
(2)
看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3)
判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,
就不成比例
4、 正比例、反比例的区别与联系
名称
正比例
不同点
意义不相同
两种量中相对应
的两个数的比
值,也就是商一
定
两种量中相对应
的两个数的积一
定
变化方向不相同 关系式不同
一种量扩大(或
缩小),另一种量
也随之扩大(或
缩小)。
一种量扩大(或
缩小),另一种量
也随之缩小(或
扩大)。
相同点
y
两种相关联的
k
(一定)
量,一种量变化
x
另一种量也随着
变化
反比例
xyk
(一定)
知识点五:用比例知识解决问题
1、
按比例分配问题
(1) 按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各
是多少的
应用题叫做按比例分配应用题。
(2) 解题方法
一般方法:把比转化成
为分数,用分数方法解答,即先求出总分数,然后求出各部分量
占总量的几分之几,最后按照求一个数的
几分之几多少的解题方法,分别求出各部分的
量是多少
归一法:把比看做分得的分数,先求出
各部分的总分数,然后再用“总量
总份数=平
均每份的量(归一)”,再用“一份的
量
各部分量所对应的份数”,求出各部分的量。
用比例知识解答:首先设未知量为
。再根据题中“已知比等于相对应的量的比”作为等
量关系式列出含有x的比例式,再解比例求出x。
2、 用正、反比例知识解答应用题的步骤
(1)分析数量关系。判断成什么比例。(2)找
等量关系。如果成正比例,则按等比找
等量关系式;如果成反比例,则按等积找等量关系式。(3)解比
例式。设未知数为x,
并代入等量关系式,得正比例式或反比例式。(4)解比例。(5)检验并写出答
语。
精讲典型题
例题1
(1)
一项工程,甲单独做要4天,乙单独做要5天完成,甲和乙的工作效率比是():
()
(2)
把2米:4厘米化成最简单的整数比是(),比值是()。
例题2
汉江码头第一货场有750吨货物,分给两个运输队运到另一货场。甲队有载重6吨的
汽
车6辆,乙队有载重8吨的汽车3量,按两个队的运输能力分配,甲、乙两队各应运货多少
吨
?
巧练考点题
1. 请你填一填
(1)2.1:0.9化简成最简单的整数比是(),比值是()。
(2)甲乙两数的比是4:5,甲数是乙数的(),乙数是甲乙和的()
(3)一个最简单的整数比的比值是1.5,这个比是()
(4)4.5与它的倒数的比是()
3
=24:()=()%
8
(6)如果
a
7=
b
2(
a
、
b
都不为0),那么
a
:
b
=():()
(5)()<
br>
24=
(7)除数、被除数的比是1:3,被除数、除数、商的和是35,被除数是(
)
(8)一汽车工人加工一批零件,如下表
每天生产的个数 180
需要的天数(天) 2
90
4
① 请按每天生产量与需要时间的关系填表。
② 这批零件有()个
③
表中两种量是否成比例:(),如果成比例成()比例
(10)判断一些生活中的实例。
①用煤的天数一定,每天用煤量与总用煤量()比例。
②一本书的页数一定,已看的页数与没看的页数()比例
③三角形的面积一定,三角形的底与高()比例。
2 判断题
(1)化简比的结果是一个商,可以使小数、分数或整数。()
(2)走同一段路,甲用
11
小时,乙用小时,甲、乙的速度之比是5:4。()
54
(3)在一个比例里,如果两个外项互为倒数,那么两个内项也互为倒数。()
(4)一条道路,已修的米数和未修的米数成反比例。()
3 选择题
(1)k5
y
,且
x
和
y
都不为0,当
k
一定时,
x
和
y
成()比例。
x
A.成正比例
B.成反比例 C.不成比例
(2)杭州西湖南北长3.3km,东西宽2.8km。南北长和东西宽的比是()。
A.33km:28km B.3.3.:2.8 C.33:8
(3)一个三角形,三个内角的度数比是1:4:5,这个三角形是()
A.锐角三角形
B.直角三角形 C.钝角三角形
(4)在比例尺
1
的地图上,量得
A、B两地的距离是2cm,那么A、B两地的实际
100000
距离是()。
A.0.2km B.2km C.20km
4.解决问题。
(1)药液与水的比是1:1500,如果倒入药液20.5g,需要加多少克水呢?
(2)从儿童节那天开始,亮亮前七天看书210页,照这样计算
,这个月亮亮一共看书多少
页?