小学数学速算与巧算方法例解-小学数学巧算和速算方法

萌到你眼炸
921次浏览
2020年09月19日 19:55
最佳经验
本文由作者推荐

剑雨经典台词-自我鉴定怎么写

2020年9月19日发(作者:夏友)


立身以立学为先,立学以读书为本
小学数学速算与巧算方法例解【转】

2011-04-17 21:04:55| 分类: 教海拾贝|举报|字号 订阅
速算与巧算

在小学数学中,关于整数、小数、分数的四则运算,怎 么样才能算得既
快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特
点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算
公式,选用合理、灵活的 计算方法。速算和巧算不仅能简便运算过程,化繁为简,
化难为易,同时又会算得又快又准确。
一、“凑整”先算
1.计算:(1)24+44+56
(2)53+36+47
解:(1)24+44+56=24+(44+56)
=24+100=124
这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.
(2)53+36+47=53+47+36
=(53+47)+36=100+36=136
这样想:因为53+47=100是个整百的数 ,所以先把+47带着符号搬家,搬到
+36前面;然后再把53+47的和算出来.
2.计算:(1)96+15
(2)52+69
解:(1)96+15=96+(4+11)


立身以立学为先,立学以读书为本
=(96+4)+11=100+11=111
这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.
(2)52+69=(21+31)+69
=21+(31+69)=21+100=121
这样想:因为69+31=100,所以把52 分拆成21与31之和,再把31+69=100
凑整先算.
3.计算:(1)63+18+19
(2)28+28+28
解:(1)63+18+19
=60+2+1+18+19
=60+(2+18)+(1+19)
=60+20+20=100
这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.
(2)28+28+28
=(28+2)+(28+2)+(28+2)-6
=30+30+30-6=90-6=84
这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.
二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变
计算:(1)45-18+19
(2)45+18-19
解:(1)45-18+19=45+19-18
=45+(19-18)=45+1=46


立身以立学为先,立学以读书为本
这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.
(2)45+18-19=45+(18-19)
=45-1=44
这样想:加18减19的结果就等于减1.
三、计算等差连续数的和
相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:
1,2,3,4,5,6,7,8,9
1,3,5,7,9
2,4,6,8,10
3,6,9,12,15
4,8,12,16,20等等都是等差连续数.
1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:
(1)计算:1+2+3+4+5+6+7+8+9
=5×9 中间数是5
=45 共9个数
(2)计算:1+3+5+7+9
=5×5 中间数是5
=25 共有5个数
(3)计算:2+4+6+8+10
=6×5 中间数是6
=30 共有5个数
(4)计算:3+6+9+12+15
=9×5 中间数是9


立身以立学为先,立学以读书为本
=45 共有5个数
(5)计算:4+8+12+16+20
=12×5 中间数是12
=60 共有5个数
2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的
一半,简记成:
(1)计算:
1+2+3+4+5+6+7+8+9+10
=(1+10)×5=11×5=55
共10个数,个数的一半是5,首数是1,末数是10.
(2)计算:
3+5+7+9+11+13+15+17
=(3+17)×4=20×4=80
共8个数,个数的一半是4,首数是3,末数是17.
(3)计算:
2+4+6+8+10+12+14+16+18+20
=(2+20)×5=110
共10个数,个数的一半是5,首数是2,末数是20.
四、基准数法
(1)计算:23+20+19+22+18+21
解:仔 细观察,各个加数的大小都接近20,所以可以把每个加数先按20相
加,然后再把少算的加上,把多算 的减去.
23+20+19+22+18+21


立身以立学为先,立学以读书为本
=20×6+3+0-1+2-2+1
=120+3=123
6个加数都按20相加,其和=20×6=120.23按2 0计算就少加了“3”,所以
再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类 推.
(2)计算:102+100+99+101+98
解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采
用基准数法进行巧算.
102+100+99+101+98
=100×5+2+0-1+1-2=500
方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有
符号搬家)
102+100+99+101+98
=98+99+100+101+102
=100×5=500
可发现这是一个等差连续数的求和问题,中间数是100,个数是5.
加法中的巧算
1.什么叫“补数”?
两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数
叫做另一个数的“补数”。
如:1+9=10,3+7=10,
2+8=10,4+6=10,
5+5=10。
又如:11+89=100,33+67=100,


立身以立学为先,立学以读书为本
22+78=100,44+56=100,
55+45=100,
在上面算式中 ,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.
也就是说两个数互为“补数” 。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以
这样“凑” 数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如: 87655→12345, 46802→53198,
87362→12638,…
下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1 巧算下面各题:
①36+87+64②99+136+101
③ 1361+972+639+28
解:①式=(36+64)+87
=100+87=187
②式=(99+101)+136
=200+136=336
③式=(1361+639)+(972+28)
=2000+1000=3000
3.拆出补数来先加。
例2 ①188+873 ②548+996 ③9898+203
解:①式=(188+12)+(873-12)(熟练之后,此步可略)
=200+861=1061


立身以立学为先,立学以读书为本
②式=(548-4)+(996+4)
=544+1000=1544
③式=(9898+102)+(203-102)
=10000+101=10101
4.竖式运算中互补数先加。
如:

二、减法中的巧算
1.把几个互为“补数”的减数先加起来,再从被减数中减去。
例 3① 300-73-27
② 1000-90-80-20-10
解:①式= 300-(73+ 27)
=300-100=200
②式=1000-(90+80+20+10)
=1000-200=800
2.先减去那些与被减数有相同尾数的减数。
例4① 4723-(723+189)
② 2356-159-256
解:①式=4723-723-189
=4000-189=3811
②式=2356-256-159
=2100-159
=1941


立身以立学为先,立学以读书为本
3.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多
加的数再减去 ,把多减的数再加上)。
例 5 ①506-397
②323-189
③467+997
④987-178-222-390
解:①式=500+6-400+3(把多减的 3再加上)
=109
②式=323-200+11(把多减的11再加上)
=123+11=134
③式=467+1000-3(把多加的3再减去)
=1464
④式=987-(178+222)-390
=987-400-400+10=197
三、加减混合式的巧算
1.去括号和添括号的法则
在只有加减运算的 算式里,如果括号前面是“+”号,则不论去掉括号或添
上括号,括号里面的运算符号都不变;如果括号 前面是“-”号,则不论去掉括
号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-” 变“+”,
即:
a+(b+c+d)=a+b+c+d
a-(b+a+d)=a-b-c-d
a-(b-c)=a-b+c


立身以立学为先,立学以读书为本
例6 ①100+(10+20+30)
② 100-(10+20+3O)
③ 100-(30-10)
解:①式=100+10+20+30
=160
②式=100-10-20-30
=40
③式=100-30+10
=80
例7 计算下面各题:
① 100+10+20+30
② 100-10-20-30
③ 100-30+10
解:①式=100+(10+20+30)
=100+60=160
②式=100-(10+20+30)
=100-60=40
③式=100-(30-10)
=100-20=80
2.带符号“搬家”
例8 计算 325+46-125+54
解:原式=325-125+46+54


立身以立学为先,立学以读书为本
=(325-125)+(46+54)
=200+100=300
注意:每个数 前面的运算符号是这个数的符号.如+46,-125,+54.而325前
面虽然没有符号,应看作是 +325。
3.两个数相同而符号相反的数可以直接“抵消”掉
例9 计算9+2-9+3
解:原式=9-9+2+3=5
4.找“基准数”法
几个比较接近于某一整数的数相加时,选这个整数为“基准数”。
例10 计算 78+76+83+82+77+80+79+85
=640
1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的
等式:
5×2=10
25×4=100
125×8=1000
例1 计算①123×4×25
② 125×2×8×25×5×4
解:①式=123×(4×25)
=123×100=12300
②式=(125×8)×(25×4)×(5×2)
=1000×100×10=1000000
2.分解因数,凑整先乘。


立身以立学为先,立学以读书为本
例 2计算① 24×25
② 56×125
③ 125×5×32×5
解:①式=6×(4×25)
=6×100=600
②式=7×8×125=7×(8×125)
=7×1000=7000
③式=125×5×4×8×5=(125×8)×(5×5×4)
=1000×100=100000
3.应用乘法分配律。
例3 计算① 175×34+175×66
②67×12+67×35+67×52+6
解:①式=175×(34+66)
=175×100=17500
②式=67×(12+35+52+1)
= 67×100=6700
(原式中最后一项67可看成 67×1)
例4 计算① 123×101 ② 123×99
解:①式=123×(100+1)=123×100+123
=12300+123=12423
②式=123×(100-1)
=12300-123=12177


立身以立学为先,立学以读书为本
4.几种特殊因数的巧算。
例5 一个数×10,数后添0;
一个数×100,数后添00;
一个数×1000,数后添000;
以此类推。
如:15×10=150
15×100=1500
15×1000=15000
例6 一个数×9,数后添0,再减此数;
一个数×99,数后添00,再减此数;
一个数×999,数后添000,再减此数; …
以此类推。
如:12×9=120-12=108
12×99=1200-12=1188
12×999=12000-12=11988
例7 一个偶数乘以5,可以除以2添上0。
如:6×5=30
16×5=80
116×5=580。
例8 一个数乘以11,“两头一拉,中间相加”。
如 2222×11=24442


立身以立学为先,立学以读书为本
2456×11=27016


例9 一个偶数乘以15,“加半添0”.
24×15
=(24+12)×10
=360
因为
24×15
= 24×(10+5)
=24×(10+10÷2)
=24×10+24×10÷2(乘法分配律)
=24×10+24÷2×10(带符号搬家)
=(24+24÷2)×10(乘法分配律)
例10 个位为5的两位数的自乘:十位数字×(十位数字加1)×100+25
如15×15=1×(1+1)×100+25=225
25×25=2×(2+1)×100+25=625
35×35=3×(3+1)×100+25=1225
45×45=4×(4+1)×100+25=2025
55×55=5×(5+1)×100+25=3025
65×65=6×(6+1)×100+25=4225
75×75=7×(7+1)×100+25=5625


立身以立学为先,立学以读书为本
85×85=8×(8+1)×100+25=7225
95×95=9×(9+1)×100+25=9025
还有一些其他特殊因数相乘的简便算法,有兴趣的同学可参看《算得快》一
书。
二、除法及乘除混合运算中的巧算
1.在除法中,利用商不变的性质巧算
商不变的 性质是:被除数和除数同时乘以或除以相同的数(零除外),商不
变.利用这个性质巧算,使除数变为整 十、整百、整千的数,再除。
例11 计算①110÷5②3300÷25
③ 44000÷125
解:①110÷5=(110×2)÷(5×2)
=220÷10=22
②3300÷25=(3300×4)÷(25×4)
=13200÷100=132
③ 44000÷125=(44000×8)÷(125×8)
=352000÷1000=352
2.在乘除混合运算中,乘数和除数都可以带符号“搬家”。
例12 864×27÷54
=864÷54×27
=16×27
=432
3.当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个
数。
例13① 13÷9+5÷9 ②21÷5-6÷5


立身以立学为先,立学以读书为本
③2090÷24-482÷24
④187÷12-63÷12-52÷12
解:①13÷9+5÷9=(13+5)÷9
=18÷9=2
②21÷5-6÷5=(21-6)÷5
=15÷5=3
③2090÷24-482÷24=(2090-482)÷24
=1608÷24=67
④187÷12-63÷12-52÷12
=(187-63-52)÷12
=72÷12=6
4.在乘除混合运算中“去括号”或添“括号”的方法:如果“括 号”前面是
乘号,去掉“括号”后,原“括号”内的符号不变;如果“括号”前面是除号,
去掉 “括号”后,原“括号”内的乘号变成除号,原除号就要变成乘号,添括号
的方法与去括号类似。
即a×(b÷c)=a×b÷c 从左往右看是去括号,
a÷(b×c)=a÷b÷c 从右往左看是添括号。
a÷(b÷c)=a÷b×c
例14 ①1320×500÷250
②4000÷125÷8
③5600÷(28÷6)
④372÷162×54
⑤2997×729÷(81×81)


立身以立学为先,立学以读书为本
解:① 1320×500÷250=1320×(500÷250)
=1320×2=2640
②4000÷125÷8=4000÷(125×8)
=4000÷1000=4
③5600÷(28÷6)=5600÷28×6
=200×6=1200
④372÷162×54=372÷(162÷54)
=372÷3=124
⑤2997×729÷(81×81)=2997×729÷81÷81
=(2997÷81)×(729÷81)=37×9
=333
例1 计算9+99+999+9999+99999
解:在涉及所有数字都是9的计算中,常使用凑整 法.例如将999化成1000—1
去计算.这是小学数学中常用的一种技巧.
9+99+999+9999+99999
=(10-1)+(100-1)+(1000-1)+(10000-1)
+(100000-1)
=10+100+1000+10000+100000-5
=111110-5
=111105.
例2 计算199999+19999+1999+199+19
解:此题各数字中,除最高位是1外, 其余都是9,仍使用凑整法.不过这里


立身以立学为先,立学以读书为本
是加1凑整.(如 199+1=200)
199999+19999+1999+199+19
=(19999+1)+(19999+1)+(1999+1)+(199+1)
+(19+1)-5
=200000+20000+2000+200+20-5
=222220-5
=22225.
例3 计算(1+3+5+…+1989)-(2+4+6+…+1988)

解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结
果是:

从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的
数相加的结果是:

从2到1988共有994个偶数,凑成497个1990.
1990×497+995—1990×497=995.
例4 计算 389+387+383+385+384+386+388
解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准
数.
389+387+383+385+384+386+388
=390×7—1—3—7—5—6—4—
=2730—28


立身以立学为先,立学以读书为本
=2702.
解法2:也可以选380为基准数,则有
389+387+383+385+384+386+388
=380×7+9+7+3+5+4+6+8
=2660+42
=2702.
例5 计算(4942+4943+4938+4939+4941+4943)÷6
解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为
基准数.
(4942+4943+4938+4939+4941+4943)÷6
=(4940×6+2+3—2—1+1+3)÷6
=(4940×6+6)÷6(这里没有把4940×6先算出来,而是运
=4940×6÷6+6÷6运用了除法中的巧算方法)
=4940+1
=4941.
例6 计算54+99×99+45
解:此题表面上看没有巧妙的算法, 但如果把45和54先结合可得99,就可
以运用乘法分配律进行简算了.
54+99×99+45
=(54+45)+99×99
=99+99×99
=99×(1+99)


立身以立学为先,立学以读书为本
=99×100
=9900.
例7 计算 9999×2222+3333×3334
解:此题如果直接乘,数字较大,容易出错.如果将9999变为3333×3,规
律就出现了.
9999×2222+3333×3334
=3333×3×2222+3333×3334
=3333×6666+3333×3334
=3333×(6666+3334)
=3333×10000
=33330000.
例8 1999+999×999
解法1:1999+999×999
=1000+999+999×999
=1000+999×(1+999)
=1000+999×1000
=1000×(999+1)
=1000×1000
=1000000.
解法2:1999+999×999
=1999+999×(1000-1)
=1999+999000-999


立身以立学为先,立学以读书为本
=(1999-999)+999000
=1000+999000
=1000000.

有多少个零.

总之,要想在计算 中达到准确、简便、迅速,必须付出辛勤的劳动,要多练
习,多总结,只有这样才能做到熟能生巧.

社会主义国家有哪些-同课异构心得体会


2018放假-新西兰高中留学费用


晚婚晚育政策-两会是什么意思


天津电大在线平台-描写夏天景色的诗句


河北联合大学-合作社财务管理制度


英语短文阅读-衣食住行


中国期货市场-工作能力


六一国际儿童节-国庆祝福祖国寄语