北师大版五年级数学下册第二单元测试题含答案

别妄想泡我
723次浏览
2020年09月22日 03:16
最佳经验
本文由作者推荐

工业工程就业前景-写给幼儿园老师的话

2020年9月22日发(作者:平亚利)


北师大版五年级数学下册第二单元测试题含答案
(共3套)
教材过关卷(2)
一、填一填。(1,2题每空1分,3~5题每题4分,共24分)
1.长方体和正方体都有( )个面,( )条棱,( )个顶点。长
方体的棱中长度相等的一组至少有( )条,正方体所有棱长都
( )。
2.右边的图形(单位:cm)可以折成一个长方体,
这个长方体的长是( )cm,宽是( )cm,
高是( )cm。折成的长方体有( )个面是正方形,每个正方形
的面积是( )cm
2
,有( )个面是长方形,每个长方形面积的
大小( )。
3.两个完全一样的正方体拼成一个长方体,其表面积( )(填“大
于”“小于”或“等于 ”)原来两个正方体的表面积之和;若将一个长方
体切成两个小正方体,得到的两个小正方体的表面积之 和
( )(填“大于”“小于”或“等于”)原来长方体的表面积。
4.一个长方体鱼缸,长为8 dm,宽为5 dm,高为6 dm。前面的玻
璃不小心被打坏了,修理时配上的玻璃面积是( )。

5.把一个长方体纸盒相邻的两面沿棱撕下来,展开后如右图(图中数


据单位:cm), 这个纸盒的前面面积比左面面积大( )cm
2

二、判一判。(每题2分,共8分)
1.有6个面,12条棱,8个顶点的立体图形一定是长方体。( )
2.正方体的棱长扩大到原来的2倍,则表面积也扩大到原来的2倍。
( )
3.一个长方体的棱长之和是60 cm,从一个顶点引出的三条棱长的
和是20 cm。
4.长方体(不是正方体)中最多有8条棱的长度相等。
三、选一选。(每题4分,共16分)
1.下面图形能围成长方体或正方体的是( )。
( )
( )

2.长方体(不是正方体)的6个面中,下列说法错误的是( )。
A.可能都是长方形
B.可能有2个面是正方形
C.可能有4个面是正方形
D.可能有4个相同的面
3.棱长为5 dm的两个正方体拼成一个长方体,拼成的长方体的表面
积比原来两个正方体的表面积之和( )。
A.增加了50 dm
2


B.增加了25 dm
2

C.减少了50 dm
2

D.减少了25 dm
2

4.用棱长为1 cm的小正方体摆成一个稍大一些的正方体,至少需要
( )这样的小正方体,这时得到的大正方体的表面积是
( )cm
2

A.4个 B.8个 C.8 D.24
四、按要求做题。(1题4分,2题6分,共10分)
观察长方体的展开图。

1.在上面的长方体展开图中,把相对的面涂上相同的颜色。
2.算出这个长方体的表面积。




五、解决问题。(1题10分,其余每题8分,共42分)
1.计算下面各图形的表面积。(单位:cm)




2.用一根铁丝刚好焊成一个棱长为8 cm的正方体框架。如果用这根
铁丝刚好焊成一个长10 cm,宽7 cm的长方体框架,它的高应该
是多少厘米?





3.4个棱长为30 cm的正方体纸箱放在墙角(如图)。
(1)有几个面露在外面?



(2)露在外面的面积是多少平方厘米?







4.为了迎接“六一”儿童节, 工人叔叔要在长方体形状的少年宫四周
装上彩灯(地面的四边不装),已知少年宫长120 m,宽50 m,高
12 m,工人叔叔至少需要多长的彩灯?






5.小东有一个木质棋盒,形状是长方体(无盖),长1.5 dm,高0.4 dm,
宽0.6 dm。做这个棋盒至少需要多少木板?他想给这个棋盒配一
个盖,还需要多少木板?


答案
一、1.6 12 8 4 相等
2.8 2 2 2 4 4 相等
3.小于 大于
4.48 dm
2
5.18
二、1.× 2.× 3.× 4.√
三、1.C 2.C 3.C 4.B D
四、1.略
2.(14-6)÷2=4(cm),是这个长方体的高,8 cm是这个长方体
的长,6 cm是这个长方体的宽。
(8×6+8×4+6×4)×2=208(cm
2
)
答:这个长方体的表面积是208 cm
2

五、1.6×6×6=216(cm
2
)
(10×5+10×3+5×3)×2=190(cm
2
)
2.8×12=96(cm)
96÷4=24(cm)
24-10-7=7(cm)
答:它的高应该是7 cm。
点拨:正方体框架棱长总和和长方体框架棱长总和相等,都
是这根铁丝的长。
3.(1)4+2+2=8(个)
答:有8个面露在外面。


(2)30×30×8=7200(cm
2
)
答:露在外面的面积是7200 cm
2

4.120×2+50×2+12×4=388(m)
答:工人叔叔至少需要388 m长的彩灯。
5.1.5×0.6+(1.5×0.4+0.6×0.4)×2=2.58(dm2
)
1.5×0.6=0.9(dm
2
)
答:做这个棋盒至少需要2.58 dm
2
木板,要配一个盖还需要
0.9 dm
2
木板。
第二单元达标测试卷
一、填一填。(1,6,8题每题3分,其余每题2分,共23分)
1.右图所示的长方体的长是( )cm,宽是( )cm,
高是( )cm。
2.焊接一个长15 cm,宽12 cm,高8 cm的长方体框架,
至少要( )cm长的钢筋。
3.将一个长10 cm,宽8 cm,高12 cm的长方体木块放在桌面上,
与桌面接触的面积最大是( )cm
2

4.一个正方体的棱长总和是48 dm,它的棱长是( )dm,每个面
的面积都是( )dm
2

5.下图是把一个长方体切成两个相同的正方体,表面积增加了
( )cm
2


6.一个长方体的棱长总和是36 cm,它的长可能是( ) cm,宽可


能是( )cm,高可能是( )cm。
7.把两个棱长为20 cm的正方体纸盒放在墙角处(如右图),
有( )个面露在外面,露在外面的面积是( )cm
2

8.如右图,是一个正方体的展开图,各面中( )
( )相对;( )和( )相对;( )和( )
对。
9.做一个长方体鱼缸,用了下面几块长方形的玻璃。(单位:dm)



这个鱼缸的底是( )号玻璃,鱼缸深( )dm。
10.长方体长和高所在的一个面的面积是36 cm
2
,长是12 cm,宽是
8 cm,这个长方体的表面积是( )cm
2

二、判一判。(每题1分,共5分)
1.两个长方体的表面积相等,那么这两个长方体一定完全一样。
( )
2.棱长为2 cm的正方体,它的表面积与棱长之和相等。( )
3.正方体相邻两个面的面积一定相等,长方体相邻两个面的面积一
定不相等。 ( )
4.能围成长方体。 ( )
5.将长方体切成两个相同的正方体,每个正方体的表面积都是原来
长方体表面积的一半。
三、选一选。(每题2分,共10分)
( )


1.一个长方体的棱长和是72 cm,长是9 cm,高是5 cm,宽是( )。
A.6 cm
C.4 cm
B.10 cm
D.5 cm
2.下面的展开图中,不能折成正方体的是( )。
..




3.如下图,甲与乙的表面积相比,( )。

A.甲大于乙
C.甲等于乙
B.甲小于乙
D.无法比较谁大谁小
4.把一个长8 cm,宽6 cm,高4 cm的长方体切成两个长方体,下
面( )的切法增加的表面积最少。

5.将3个同样大的小正方体堆放在墙角(如右图),已知
露在外面的面积是448 cm
2
,则每个小正方体的棱长
是( )cm。
A.4
C.16
B.8
D.28
四、求下面各图形的表面积。(单位:cm)(8分)



五、看图找规律并填表。(每空1分,共8分)
将长方体木块按下列方式摆放在地面上。

长方体的个数
露在外面的面数
1

2

3

4

5

6 … 10 …


… 62
六、细心填一填。(每题2分,共10分)
1.一个长方体(不是正方体)最多有( )条棱长度相等,最多有( )
个面面积相等。
2.一个正方体,相交于一个顶点的三条棱长之和是24 cm,它的表
面积是( )。 < br>3.为了更好地照顾“留守儿童”的生活,学校购置了一
台洗衣机,并为洗衣机做了一个布罩(如 右图所示)。
做这个布罩至少要用( )m
2
布。
4.某市为了迎接某大 会的召开,把会议大厅里8根同样的长方体立
柱重新刷油漆。已知立柱的长为8 dm,宽为5 dm,高为5 m,刷
油漆的面一共有( )m
2

5.下图的两个长方形分别是一个长方体的前面和右面,则这个长方
体上面的面积是( )cm
2
。(单位:cm)

七、解决问题。(1题10分,6题6分,其余每题5分,共36分)
1.(1)求下面图形的表面积。(单位:cm)




(2)下面是一个长方体展开图,求它的表面积。



2.希望小学准备粉刷微机教室,微机教室长9 m,宽6 m,高3.5 m,
要给教室的四周和房顶刷涂料,除去门窗10 m
2
。粉刷涂料的总面
积是多少平方米?



3.(变式题)如图,将一个长12 cm,宽6 cm,高2 cm的长方体锯成
三个相同的小长方体,这三个小长方体的表面积总和是多少平方
厘米?



4.一个长方体(如图),如果高增加4 cm,就变成了棱长是10 cm的
正方体。这时表面积增加了多少平方厘米?


5.(变式题)两个相同的正方体木块拼成一个长方体,棱长之和减少
了24 cm,这两个正方体木块原来的棱长总和是多少?




6.用一张长30 cm、宽24 cm的长方形纸板,做了一个展开图如下
图的无盖长方体纸盒。
(1)这个纸盒的长是( )cm,宽是( )cm,高是( )cm。

(2)把这个纸盒放在地上,最多占地多少平方厘米?


答案
一、1.3 2 4 2.140 3.120 4.4 16
5.32 6.5 3 1 (答案不唯一) 7.5 2000
8.2 4 3 5 1 6 9.① 4 10.312
二、1.× 2.× 3.× 4.√ 5.×
三、1.C 2.D
3.C 点拨 :本题易犯的错误是认为挖去了一部分后表面积就
会减少,其实表面积没有变化。通过平移就可得到答案 。
4.B 5.B
四、10×10×6=600(cm
2
)
(6×6+6×15+6×15)×2=432(cm
2
)
五、
长方体的个数
露在外面
5
的面数
点拨:按题中方式摆放n个长方体,露在外面的面数为3n+2。
六、1.8 4 点拨:本题容易忽视“最多”。
2.384 cm
2
点拨:24÷3=8(cm)。
8×8×6=384(cm
2
)。
3.4.16 点拨:8×7+8×12×2+7×12×2=416(dm
2
)=4 .16(m
2
),布罩
不需要做底面,所以是5个面的面积和。
4.104点拨:8 dm=0.8 m,5 dm=0.5 m,
8 11 14 17 20 … 32 … 62
1 2 3 4 5 6 … 10 … 20


(0.8×5+0.5×5)×2×8=104(m
2
)。
5.18 点拨:由图可知长方体的长是6 cm,宽是3 cm,上面面积:
6×3=18(cm
2
)。
七、1.(1)5×5×6+2×2×4=166(cm
2
)
(2)7-5=2(cm)
(5×4+5×2+4×2)×2=76(cm
2
)
点拨:求长方体的表面积,要知道长、宽、高,本题的长方
体可看为长5 cm,宽4 cm,高7-5=2(cm)。
2.9×6+9×3.5×2+6×3.5×2-10=149(m
2
)
答:粉刷涂料的总面积是149 m
2

3.12÷3=4(cm)
(4×6+4×2+6×2)×2=88(cm
2
)
88×3=264(cm
2
)
答:这三个小长方体的表面积总和是264 cm
2

点拨:先求一个小长方体的表面积,再求这三个小长方体的表面
积总和。
4.10×4×4=160(cm
2
)
答:这时表面积增加了160 cm
2

5.24÷(4×2)=3(cm) 3×12×2=72(cm)
答:这两个正方体木块原来的棱长总和是72 cm。
点拨:两个正方体拼成一个长方体,减少8条棱。
6.(1)18 12 6


(2)(30-6-6)×(24-6-6)=18×12=216(cm
2
)
答:最多占地216 cm
2

第二单元过关检测卷
一、填空。(9,10题每题2分,其余每空1分,共23分)
1.长方体和正方体都有( )个面,( )条棱,( )个顶点。
2.一个长方体的棱长总和是48 cm,相交于一点的三条棱的和是
( )cm。
3.用一根1m长的木条做一个长10 cm,宽8 cm,高5 cm的长方体
框架,还剩下( )cm;做成的长方体的表面积是( )cm
2

4.用60 dm长的钢管焊接成一个正方体(接头处忽略不计),它的棱
长是( ) dm,表面积是( )dm
2

5.一个正方体的表面积是384 dm
2
,它的一个面的面积是( ) dm
2

棱长是( ) dm。
6.把3个棱长是4cm的小正方体拼成一个长方体,长方体的长是
( )cm,宽是( )cm,高是( )cm,它的表面积是( )cm
2


7.3个棱长为4 dm的正方体纸箱放在墙角处(如右图)。有( )个面
露在外面,露在外面的面积是( )。
8.如下图是一个正方体的展开图,在正方体中,与1号面相对的是
( )号面,与2号面相对的是( )号面,与3号面相对的是( )
号面。



9.如上图中长方体的长是12 cm,高是8 cm,阴影部分两个面的面
积和是200 cm
2
,那么长方体的宽是( )cm。
10.把3个棱长为15 cm的正方体,拼成一个长方体,表面积减少了
( )cm
2

二、判断。(对的画“√”,错的画“×”,每题1分,共5分)
1.表面积相等的两个正方体,它们的棱长总和一定相等。( )
2.长方体相邻两个面的面积一定不相等。 ( )
3.长方体的展开图一定是由六个长方形组成的,不可能有正方形。
( )
4.若一个长方体恰好能切成两个完全相同的正方体,则每个正方体
的表面积是原长方体表面积的一半。
5.正方体是特殊的长方体。
( )
( )
三、选择。(将正确答案的字母填在括号里,每题2分,共10分)
1.用一根60 cm长的铁丝,可以围成一个长5 cm,宽3 cm,高( )cm
的长方体框架。
A.9
C.4
B.7
D.8
2.要求做长方体通风管用多少铁皮,是求这个通风管( )个面的面
积。
A.3 B.4


C.5 D.6
3.将两个小正方体竖直叠放在地面上,有( )个面露在外面。
A.12
C.8
B.9
D.10
4.如果一个长方体的四个面的面积相等,那么其余两个面是( )。
A.长方形
B.正方形
C.可能是长方形也可能是正方形
D.无法确定
5.一个棱长1 m的正方体,如果从棱角处去掉一个棱长1 dm的小正
方体,表面积与原来相比( )。
A.减少了 B.增加了 C.没有变
四、下面的图形折叠后,哪些能围成长方体?哪些能围成正方体?(每
题3分,共6分)



1.能围成长方体的图形是( )。
2.能围成正方体的图形是( )。
五、计算下面图形的表面积。(单位:cm)(每题5分,共10分)


1.
2.




六、观察思考。(每题5分,共10分)
将小正方体按下图方式摆放在地面上。
……
1.完成表格。
小正方体的个数
3
露在外面的面的

个数
2.你发现了什么规律?



七、解决问题。(2题12分,其余每题6分,共36分)
1.一个长方体简易衣柜是用钢管做成的,长1.5 m,宽50 cm,高2.2 m,

6 9 12 15 …


做这个简易衣柜需要钢管多少米?

2.一个游泳池长50 m,宽25 m,深2 m。
(1)游泳池占地多少平方米?



(2)在池内四壁及池底贴上瓷砖,贴瓷砖的面积是多少平方米?




3.乐乐家最近用铁皮做了一个长2.5 m的长方体烟囱,烟囱的底面
是一个边长是4 dm的正方形。如果每平方米铁皮要30元,做这
个烟囱至少要多少元?




4.一个用硬纸板做成的长方体影集封套(如图),长34 cm,宽27 cm,
高2.5 cm,封套的左面不封口。做这个封套至少需要多少平方厘
米的硬纸板?




5.把三个表面积是36 m
2
的正方体拼成一个长方体,这个长方体的
表面积是多少平方米?


答案
一、1.6 12 8 2.12 3.8 340 4.5 150
5.64 8 6.12 4 4 224 7.7 112 dm
2
8.4 5 6
9.10 10.900
二、1.√
2.× 点拨:当长方体有一组相对的面是正方形时,长方体相邻
的两个面的面积相等。
3.×
4.× 点拨:把一个长方体切成两个正方体后,总的表面积比原
来增加了。
5.√
三、1.B 2.B 3.B 4.B 5.C
四、1.①③ 2.②④⑥
五、1.4.5×4.5×6=121.5(cm
2
)
2.前面:15×3+(4-3)×5=50(cm
2
)
上面:15×5=75(cm
2
)
左面:5×4=20(cm
2
)
表面积:(50+75+20)×2=290(cm
2
)
六、1.
小正方体的个数
露在外面的面的
13 20 27 34 41
个数

3 6 9 12 15 …


2.我发现在第一幅图中的3个小 正方体有13个面露在外面的基
础上每增加3个小正方体,露在外面的面就增加7个。
点拨:规律的叙述不唯一,只要正确即可。
七、1.50 cm=0.5 m (1.5+0.5+2.2)×4=16.8(m)
答:做这个简易衣柜需要钢管16.8 m。
2.(1)50×25=1250(m
2
)
答:游泳池占地1250 m
2

(2)50×25+(50×2+25×2)×2=1550(m
2
)
答:贴瓷砖的面积是1550 m
2

3.4 dm=0.4 m 0.4×2.5×4×30=120(元)
答:做这个烟囱至少要120元。
4.(2.5×27+34×27)×2+2.5×34=2056(cm
2
)
答:做这个封套至少需要2056 cm
2
的硬纸板。
5.36÷6=6(m
2
) 6×(3×4+2)=84(m
2
)
答:这个长方体的表面积是84 m
2


北大毕业典礼-观察日记300字


共享宝马-论文结论范文


精神医学-社会实践自我鉴定


高考零分作文大全-世界十大名车排行榜


曼珠沙华花语-一季度思想汇报


鳄梨怎么吃-化州市人力资源和社会保障局


北京市人力资源和社会保障局-航行通告


初一地理教案-北京民族大学