六年级小升初数学试卷(含答案)
北邮研究生招生网-学会宽容议论文
一、填空题:
1.用简便方法计算下列各题:
(2)1997×19961996-1996×19971997=______;
(3)100+99-98-97+…+4+3-2-1=______.
2.右面
算式中A代表______,B代表______,
C代表______,D代表______(A、B
、C、D各代表
一个数字,且互不相同).
3.今年弟弟6岁,哥哥15岁,当两人的
年龄和为65时,弟弟______岁.
4.在某校周长400米的环形跑道上,每
隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,
黄旗______面.
5.在乘积1×2×3×…×98×99×100中,末尾有_____
_个零.
6.如图中,能看到的方砖有______块,看
不到的方砖有______块.
7.右图是一个矩形,长为10厘米,宽为
5厘米,则阴影部分面积为______平方厘米.
8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了
使平均成绩尽快达到95分以上,他至少还要连考______次满分.
9.现有一叠纸币,分别是贰元和伍
元的
纸币.把它分成钱数相等的两堆.第一堆中
伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有____
__元.
10.甲、
乙两人同时从相距30千米的两
地出发,相向而行.甲每小时走3.5千米,乙
每小时走2.5
千米.与甲同时、同地、同向出
发的还有一只狗,每小时跑5千米,狗碰到
乙后就回头向甲跑去
,碰到甲后又回头向乙
跑去,……这只狗就这样往返于甲、乙之间直
到二人相遇而止,则相遇时
这只狗共跑了____
__千米.
二、解答题:
1.右图是某一个浅湖泊的平面图,图中
曲线都是湖岸
(1)若P点在岸上,则A点在岸上还是
水中?
(2)某人过这湖泊,他下
水时脱鞋,上
岸时穿鞋.若有一点B,他脱鞋的次数与穿
鞋的次数和是奇数,那么B点在岸上还
是水
中?说明理由.
2. 将1~3000的整数按
照下表的方式排
列.用一长方形框出九个数,要使九个数的
和等于(1)199
7(2)2160(3)2142能否办到?
若办不到,简单说明理由.若办得到,写出
正方框
里的最大数和最小数.
3.甲、乙、丙、丁四个人比赛
乒乓球,
每两人要赛一场,结果甲胜了丁,并且甲、
乙、丙三人胜的场数相同,问丁胜了几场?
4.有四条弧线都是半径为3厘米的圆的
一部分,它们成一个花瓶(如图).请
你把
这个花瓶切成几块,再重新组成一个正方形,
并求这个正方形的面积.
以下答案为网友提供,仅供参考:
一、填空题:
1.(1)(24) (2)(0)
原式=1997×(19960000+1996)-19
96×(19970000+1997)
=1997×19960000+1997×1996-199
6×19970000-1996×1997=0
(3)(100)原式=(100-98)+
(99-97)+…+
(4-2)+(3-1)=2×50=100
2.(1、0、9
、8)由于被减数的千位是A,
而减数与差的千位是0,所以A=1,“ABCD”至少
是“A
BC”的10倍,所以“CDC”至少是ABC的9倍.于
是C=9.再从个位数字看出D=8,十位数
字B=0.
3.(28) (65-9)÷2=28
4.(50、150) 40O÷8=50,8÷2-1=3 3×5
0=150
5.(24)由2×5=10,所以要计算末尾的零
只需数清前100个自然数中含质因数2和5的个数,而其中2的个数远远大于5的个数,所
以含5的因数个数等于末尾零的个数.
6.(36,55)
由图观察发现:第一层能看到:1块,第
二层能看到:
2×2-1=3块,第三层:3×2-1=5块.上面六层
共能看到方砖:1+3+5+7
+9+11=36块.
而上面六层共有:1+4+9+16+25+36=91块,所
以看不到的方砖有91-36=55块.
7.(25)
8.(5) 考虑已失分情况。要使平均成
绩达到95分以上,也就是每次平均失分不多
于5分.100-90)×4÷5=8(次)8-4=4次
,即再考4
次满分平均分可达到95,要达到95以上即需
4+1=5次.
9.(280)
第一堆中钱数必为5+2=7元的倍数;第二
堆钱必为20元的倍数(
因至少需5个贰元与2
个伍元才能有相等的钱数).但两堆钱数相
等,所以两堆钱数都应是7×
20=140元的倍数.所
以至少有2×140=280元.
10.(25)转换一个角度思考:当甲、乙
相会时,甲、乙和狗走路的时间都是一样的.
30÷(3.5+2.5)=5(小时) 5×5=25(千米)
二、解答题:
1.
(1)在水中.连结AP,与曲线交点数是
奇数.
(2)在岸上.从水中经过一次岸进到水
中,脱鞋与穿鞋次数和为2.由于A点在水中,<
br>所以不管怎么走,走在水中时,穿鞋、脱鞋
次数和为偶数,则B点必在岸上.
2.1997不可能,2160不可能.2142能.
这样框出的九个数的和一定是被框出的<
br>九个数的中间的那个数的9倍,即九个数的
和能被9整除.但1997数字和不能被9整除,所以(1)不可能.
又左右两边两列的数不能作为框出的九
个数的中间一个数,即
能被15整除或被15除
余数是1的数,不能作为中间一个数.2160÷9=2
40,又24
0÷15=16,余数是零.所以(2)不可能.
3.(0场)四个人共有6场
比赛,由于甲、
乙、丙三人胜的场数相同,所以只有两种可
能性:甲胜1场或甲胜2场.若甲只
胜一场,
这时乙、丙各胜一场,说明丁胜三场,这与
甲胜丁矛盾,所以只可能是甲、乙、丙各胜
2场,此时丁三场全败.也就是胜0场.
4.只切两刀,分成三块重新拼合即可.正<
br>方形面积为(2R)2=(2×3)2=36(cm2)