2019苏教版小学数学知识点汇总

绝世美人儿
777次浏览
2020年09月25日 12:53
最佳经验
本文由作者推荐

土十条-同学会策划

2020年9月25日发(作者:周之煌)


苏教版小学数学总复习基础知识

第一部份 数与代数
(一)数的认识

整数【正数、0、负数】
一、一个物体也没有,用0表示。0和1、2、3……都是自然数。自然数是整数。
二、最小的一位数是1,最小的自然数是0。
三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。“+4”读作正四。“-4”读作负四。 +4也可以写成4。
四、像 +4、19、+8844这样的数都是正数。像-4、-11、-7、-155这样的数都是负数。
五、0既不是正数,也不是负数。正数都大于0,负数都小于0。
六、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
七、通常情况下,盈利用正数表示,亏损用负数表示。
八、通常情况下,上车人数用正数表示,下车人数用负数表示。
九、通常情况下,收入用正数表示,支出用负数表示。
十、通常情况下,上升用正数表示,下降用负数表示。
小数【有限小数、无限小数】
一、分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分 之几,三位小数表
示千分之几……
二、整数和小数都是按照十进制计数法写出的数,个、十、 百……以及十分之一、百分之一……都是计数单位。每相邻两
个计数单位间的进率都是10。
三、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。
四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
六、比较小数大小的一 般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,
从左 往右,如果哪个数位上的数大,这个小数就大。
七、把一个数改写成用“万”或“亿”作单位的数,在 万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”
字。


八、求 小数近似数的一般方法:

1先要弄清保留几位小数;

2根据需要确定看哪 一位上的数;

3用“四舍五入”的方法
求得结果。
九、整数和小数的数位顺序表:
整 数 部 分


亿








小 数 部 分


… 亿



数千

单亿

百十亿 千百十万 千 百 十 个
亿亿 万万万
位 位 位 位 位 位 位 位 位 位 位
百十千百十
亿 万 千 百 十
亿 亿 万 万 万




·































分数【真分数、假分数】
一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做 分数。表示其中一份的数,是这个分数的分数单位。
a
二、两个数相除,它们的商可以用分数表示。即:a÷b=(b≠0)
b
三、小数和分数的意义可以看出,小数实际上就是分母是10、100、1000…的分数。
四、分数可以分为真分数和假分数。
五、分子小于分母的分数叫做真分数。真分数小于1。
六、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。
七、分子和分母只有公因数1的分数叫做最简分数。
八、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
九、小数的性质和分数的基本性质一致的,应用分数的基本性质,可以通分和约分。
百分数【税率、利息、折扣、成数】
一、表示一个数是另一个数的百分之几的数叫做百分数。 百分数也叫百分率或百分比,百分数通常用“%”表示。


二、分数与百分数比较:


不同点 相同点


分 数 可以表示具体数量,可以有单位名称

表示两个数之间的关系
三、分数、
不可以表示具体数量,不可以有单位名
百分数
分数的互

(1)把分
数,用分数的分子除以分母。
(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。
(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。
(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。
(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。
(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
四、熟记常用三数的互化。
棵数占总棵数的百分之几。
六、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。
七、

1多的÷“1”= 多百分之几

2少的÷“1”= 少百分之几
八、应得利息是税前利息,实得利息是税后利息。
九、利息 = 本金 × 利率 × 时间
十、应得利息 -利息税 = 实得利息
十一、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百分之几十几。
十二、

1原价×折扣=现价

2现价÷原价=折扣

3现价÷折扣=原价
十三、几成表示十分之几表示百分之几十;几成几表示十分之几点几,表示百分之 几十几。
小数、百
化。
数化成小
五、

1出勤率表示出勤人数占总人数的百分之几。

2合格率表示合格件数占总件数的百分之几。

3成活率表示成活
因数与倍数【素数、合数、奇数、偶数】
一、4 × 3 = 12,12是4的倍数,12也是3的倍数,4和3都是12的因数。


二、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
三、一个数最小的因数是1,最大的因数是它本身。一个数因数的个数是有限的。
四、5的倍数:个位上的数是5或0。 2的倍数:个位上的数是2、4、6、8或0。2的倍数都是双数。
3的倍数:各位上数的和一定是3的倍数。
五、是2的倍数的数叫做偶数。不是2的倍数的数叫做奇数。
六、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。
七、一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数。
八、在1—20这些数中: (1既不是素数,也不是合数)
奇数:1、3、5、7、9、11、13、15、17、19。
偶数:2、4、6、8、10、12、14、16、18、20。
素数:2、3、5、7、11、13、17、19。(共8个,和为77。)
合数:4、6、8、9、10、12、14、15、16、18、20。(共11个,和为132。)
九、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4。
十、如果两个数是倍数关系,则大数是最小公倍数,小数是最大公因数。
十一、如果两个数只有公因数1,则最大公因数是1,最小公倍数是它们的乘积。

(二)数的运算
计算法则【整数、小数、分数】
一、计算整数加、减法要把相同数位对齐,从低位算起。
二、计算小数加、减法要把小数点对齐,从低位算起。
三、小数乘法:

1 先按整数乘法算出积是多少,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。


2注意:在积里点小数点时,位数不够的,要在前面用0补足。
四、小数除法:< br>○
1商的小数点要和被除数的小数点对齐;

2有余数时,要在后面添0,继续 往下除;

3个位不够商1时,
要在商的整数部分写0,点上小数点,再继续除。
4把除数转化成整数时,除数的小数点向右移动几位,被除数的小数点
也要向右移动几位 。

5当被除数的小数位数少于除数的小数位数时,要在被除数的末尾用0补足。
五、一个小数乘10、100、1000……只要把这个小数的小数点向右移动一位、两位、三位……


六、一个小数除以10、100、1000……只要把这个小数的小数点向左移动一位、 两位、三位……
七、分数加、减法:

1同分母分数相加减,把分子相加减,分母不 变。

2异分母分数相加减,要先通分化成同分母分数,
然后再相加减。
八 、分数大小的比较:

1同分母分数相比较,分子大的大,分子小的小。

2 异分母的分数相比较,先通分然后再比较;
若分子相同,分母大的反而小。
九、分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
十一、甲数除以乙数(0除外),等于甲数乘乙数的倒数。


四则运算关系

加法
减法
乘法
除法
一个加数 = 和-另一个加数
被减数 = 差 + 减数 减数 = 被减数 - 差
一个因数 = 积 ÷ 另一个因数
被除数 = 商 × 除数 除数 = 被除数 ÷ 商
两个规律
一、除法的商不变规律:被除数和除数同时乘或除以相同的数(0除外),商不变。
二、乘法的积不变规律:如果一个因数乘几,另一个因数则除以几,那么它们的积不变。
简便计算
一、运算定律:
运算定律
加法交换律
加法结合律
用字母表示
a+b=b+a
(a+b)+c=a+(b+c)


乘法交换律
乘法结合律
乘法分配律
减法运算规律
除法运算规律
a×b=b×a
(a×b)×c=a×(b×c)
(a+b)×c=a×c+b×c
a-b-c=a-(b+c)
a÷b÷c=a÷(b×c)

二、乘、除法的互化。(小技巧:符号是相反的;两个数相乘得“1”。)
(1)A÷0.1=A×10 (7)A÷0.01=A×100;
(2)A×0.1=A÷10 (8)A×0.01=A÷100
(3)A÷0.2=A×5
(4)A×0.2=A÷5
(5)A÷0.5=A×2
(6)A×0.5=A÷2
四、积与因数、商与被除数的大小比较:
第2个因数>1,积>第1个因数;
第2个因数=1,积=第1个因数;
第2个因数<1,积<第1个因数。
除数>1,商<被除数;
除数=1,商=被除数;
除数<1,商>被除数;
(9)A÷0.25=A×4
(10)A×0.25=A÷4
(11)A÷0.125=A×8
(12)A×0.125=A÷8
三、求近似数的方法。

1四舍五入法。

2进一法。

3去尾法。

数量关系


单价×数量=总价
总价÷数量=单价
总价÷单价=数量
速度×时间=路程
路程÷时间=速度
路程÷速度=时间
工作效率×工作时间=工作总量
工作总量÷工作时间=工作效率
工作总量÷工作效率=工作时间
速度和×相遇时间=路程
路程÷相遇时间=速度和
路程÷速度和=相遇时间


三、式与方程

用字母表示数
一、在一个含有字母的式子里,数字和字母、字母和字母相乘时,中间的乘号可以记作“· ”,也可以省略不写。在省略
数字与字母之间的乘号时,要把数字写在字母的前面。
二、2a 与a
2
意义不同:2a表示两个a相加,a
2
表示两个a相乘。即:2a=a +a,a
2
= a×a。
三、用字母表示数:

1用字母表示任意数:如X=4 a=6

2用字母表示常见的数量关系:如s=vt


3用字母表示运算定律:如a+b=b+a

4用字母表示计算公式:S=ah

方程与等式
一、含有未知数的等式叫做方程。 二、使方程左右两边相等的未知数的值,叫做方程的解。
三、求方程的解的过程,叫做解方程。 四、方程和等式的联系与区别:

联 系
方 程 等 式
方程一定是等式,等式不一定是方程


区 别 含有未知数 不一定含有未知数
五、等式的基本性质(一): 等式两边同时加上(或减去)一个相同的数,所得结果仍然是等式。
六、等式的基本性质(二): 等式两边同时乘(或除以)一个不等于零的数,所得结果仍然是等式。
七、列方程解应用题的一般步骤:

1弄清题意,找出未知数并用X表示。

2找出应用题中数量间的相等关系,并列出方
程。


3求出方程的解。

4检验或验算,写出答案。



(四)正比例与反比例
比和比例
一、比和比例的联系与区别:
比的意义









1、意义不

比例的意义
比的名称
2、名称不

比例的名称
比的性质
比例的性质
两个数相除又叫做两个数的比。
表示两个比相等的式子叫做比例。
两点读作比,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
组成比例的四个数叫做比例的项,两端的两项叫做比例的的外项,中间的两项叫做比例的内项。
比的前项和后项同时乘或者除以相同的数(0除外),比值不变。
在比例里,两个外项的积等于两个内项的积。
3、性质不


应用比的意义
应用比的性质
4、应用不

应用比例的意

应用比例的性

求比值。
化简比。
判断两个不能否组成比例。
不但可以判断两个比能否组成比例,还可以解比例。


二、比同分数、除法的联系与区别:

前项



比号
后项
比值
比的基本性质

比表示两个数之间的关系。

二、求比值与化简比的区别:

求比值
化简比
一 般 方 法
根据比值的意义,用前项除以后项。
根据比的基本性质,把比的前项和后项都乘或除以相同
的数(零除外)。
分数
分子
分数线
分母
分数值
分数的基本性质
分数表示一个数。
除法
被除数
除号
除数

除法的商不变性质
除法表示一种运算。
结 果
是一个数。可以是整数、小数或分数。
是一个比。它的前项和后项都是整数,
并且是互质数。


四、化简比:


1整数比的化简方法是:用比的前项和后项同时除以它们的最大公约数。


2小数比的化简方法是:先把小数比化成整数比,再按整数比化简方法化简。


3分数比的化简方法是:用比的前项和后项同时乘以分母的最小公倍数。
五、比例尺:我们把图上距离和实际距离的比叫做这幅图的比例尺。

图上距离
六、比例尺=图上距离︰实际距离 比例尺 =
实际距离

正比例、反比例
一、正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两 种量中相对应的两个数的比值(也就是商)
一定,这两种量就叫做成正比例的量,它们的关系就叫做正比 例关系。
二、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的 两个数的积一定,这两种量
就叫做成反比例的量,它们的关系就叫做反比例关系。
三、正比例与反比例的区别:

相 同 点
正 比 例 反 比 例
都有两种相关联的量,一种量变化,另一种量也随着变化。
商一定
不 同 点
y
x
= k(一定)
积一定
x×y=k(一定)











第二部份 空间与图形
(一)图形的认识、测量
量的计量
一、长度单位是用来测量物体的长度的。常用的长度单位有:千米、米、分米、厘米、毫米。 二、长度单位:
1千米=1000米 1米=10分米
1分米=10厘米
1米=100厘米
1厘米=10毫米
1米=1000毫米
三、面积单位是用来测量物体的表面或平面 图形的大小的。常用面积单位:平方千米、公顷、平方米、平方分米、平方厘
米。
四、测量和计算土地面积,通常用公顷作单位。边长100米的正方形土地,面积是1公顷。
五、测量和计算大面积的土地,通常用平方千米作单位。边长1000米的正方形土地,面积是1平方千米。
六、面积单位:(100)
1平方千米=100公顷
1平方米=100平方分米
1公顷=10000平方米
1平方分米=100平方厘米
七、体积单位是用来测量 物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。
八、体积单位:(1000)
1立方米=1000立方分米 1立方分米=1000立方厘米


1升=1000毫升
九、常用的质量单位有:吨、千克、克。十、质量单位:
1吨=1000千克
十一、常用的时间单位有:
世纪、年、季度、月、旬、日、时、分、秒。

十二、时间单位:(60)
1世纪=100年
1年=4个季度
1个月=3旬
小月=30天
闰年二月=29天
1小时=60分

1千克=1000克
1年=12个月
1个季度=3个月
大月=31天
平年二月=28天
1天=24小时
1分=60秒
十三、高级单位的名数改写成低级单位的名数应该乘 以进率;低级单位的名数改写成高级单位的名数应该除以进率。
十四、常用计量单位用字母表示:
千米:km 米:m 分米:dm 厘米:cm 毫米:mm
吨:t 千克:kg 克:g 升:l 毫升:ml
平面图形【认识、周长、面积】

一、用直尺把两点连接起来, 就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可
以得到一条直 线。线段、射线都是直线上的一部分。线段有两个端点,长度是有限的;射线只有一个端点,直线没有端
点,射线和直线都是无限长的。
二、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大 小有关,与边的长短无关。角的大小的计量单位是
(°)。
三、角的分类:小于90度的角是 锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;


等于360度的角是周角。
四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。
五、三角形是 由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。
六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。按边分,可以分为等边三角形、等腰三角 形和任意
三角形。
七、三角形的内角和等于180度。
八、在一个三角形中,任意两边之和大于第三边。
九、在一个三角形中,最多只有一个直角或最多只有一个钝角。
十、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。 十一、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且 两端都在圆
的线段叫做圆的直径。
十二、有一些图形,把它沿着一条直线对折,直线两侧的图 形能够完全重合,这样的图形就是轴对称图形。这条直线叫做
对称轴。
十三、围成一个图形的所有边长的总和就是这个图形的周长。
十四、物体的表面或围成的平面图形的大小,叫做它们的面积。
十五、平面图形的面积计算公式推导:
【1】平行四边形面积公式的推导过程?





1把平行四边形通过剪切、平移可以转化成一个长方形。


2长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。


3因为:长方形面积=长×宽,所以:平行四边形面积=底×高。即:S=ah。
【2】三角形面积公式的推导过程?



1用两个完全一样的三角形可以拼成一个平行四边形。



2平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它等底等高 的平行四边形面积
的一半


3因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2。 即:S=ah÷2。
【3】梯形面积公式的推导过程?




1用两个完全一样的梯形可以拼成一个平行四边形。


2平 行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半。


3因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2 。即:S=(a+b)h÷2。
【4】画图说明圆面积公式的推导过程






1把圆分成若干等份,剪开后,拼成了一个近似的长方形。


2长方形的长相当于圆周长的一半,宽相当于圆的半径。


3因为:长方形面积=长×宽,所以:圆面积=πr×r=πr
2
。即:S=πr
2< br>。
十六、平面图形的周长和面积计算公式:
长方形周长 =(长+宽)× 2
长方形面积 = 长 × 宽
正方形周长 = 边长 × 4
C = πd
C = 2πr
r= d÷2
S = πr
d
2
S =π()
2
2
C
S=π(
2


2


正方形面积 = 边长 × 边长
平行四边形面积 = 底 × 高
三角形面积 = 底 × 高 ÷ 2
十七、常用数据:
常用π值
2π=6.28
3π=9.42
4π=12.56
5π=15.70
6π=18.84
r=C ÷2π
d=2r
d=c ÷π
常用平方数
1
2
= 1
2
2
=4
3
2
=9
4
2
=16
5
2
=25



7π=21.98
8π=25.12
9π=28.26
10π=31.4
20π=62.8
立体图形【认识、表面积、体积】
一、长方体、正方体都有6个面,12条棱,8个顶点。正方体是特殊的长方体。
二、圆柱的特征:一个侧面、两个底面、无数条高。
三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。
四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。
五、体积:物体所占空间的大小叫做物体的体积。容器所能容纳其它物体的体积叫做容器的容积。
六、圆柱和圆锥三种关系:

1等底等高: 体积1︰3

2等底等体积:高1︰3

3等高等体积:底面积1︰3
七、等底等高的圆柱和圆锥:
1


1圆锥体积是圆柱的,

2圆柱体积是圆锥的3倍,
3
2


3圆锥体积比圆柱少,

4圆柱体积比圆锥多2倍。
3
八、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。
九、立体图形公式推导:


【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱 侧面积公式的推导过程)







1圆柱的侧面展开后一般得到一个长方形。
底面周长


2长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。


3因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。


4圆柱的侧面展开后还可能得到一个正方形。
正方形的边长=圆柱的底面周长=圆柱的高。
【2】我们在学习圆柱体积的计算公式时,是把圆柱转化 成以前学过的一种立体图形(近似的)进行推导的,请你说出这种
立体图形的名称以及它与圆柱体有关部 分之间的关系?


1把圆柱分成若干等份,切开后拼成了一个近似的长方体。
2长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

3因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。即:V=Sh。

【3】请画图说明圆锥体积公式的推导过程?





1找来等底等高的空圆锥和空圆柱各一只。


2将圆锥装满 沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。


3通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等 高的圆锥体积的三
1
倍。即:V=Sh。
3


十、立体图形的棱长总和、表面积、体积计算公式:
名称
长方体棱长总和
长方体表面积
长方体体积
正方体棱长总和
正方体表面积
正方体体积
圆柱体侧面积
圆柱体表面积
圆柱体体积
圆锥体体积
计算公式
长方体棱长总和 = (长+宽+高)× 4
长方体表面积=(长×宽+长×高+宽×高)×2
长方体体积=长×宽×高
正方体棱长总和=棱长×12
正方体表面积=棱长×棱长×6
正方体体积=棱长×棱长×棱长
圆柱体侧面积=底面周长×高
圆柱体表面积=侧面积+底面积×2
圆柱体体积=底面积×高
1
圆锥体体积=Sh
3
(二)图形与变换
一、变换图形位置的方法有平移、旋转等,在变换位置时,每个 图形的相应顶点、线段、曲线应同步平移,旋转相同的角
度。
二、不改变图形的形状,只改变 它的大小时,通常要使每个图形的要素,如长方形的长与宽,三角形的底与高等同时按相
同比例放大或缩 小。
三、对称图形是对称轴两边的图形经对折后能够完全重合,而不是完全相同。
(三)图形与位置
一、当我们处在实际生活及情景中,面对教短距离时,通常用上、下、前、后来描述具体位置。
二、当我们面对地图、方位图时,通常用东、西、南、北,南偏东、北偏东……来描述方向。再结合所示比例尺 计算出具


体距离,把方向与距离结合起来确定位置。
第三部份 统计与可能性

(一)统 计
一、我们通常都是通过打勾、画圆、划“正”字的方法进行数据的收集和整理。
二、常见的统计图有条形统计图、折线统计图和扇形统计图三种。
三、条形统计图的特点:从图中能清楚地看出各种数量的多少,便于比较。
四、折线统计图的特点:不但能看出各种数量的多少,而且还能够清楚地表示出数量增减变化的情况。
五、扇形统计图的特点:表示各部分和总数之间,以及部分与部分之间的关系。
六、中位数、众数、平均数
名称
中位数
众数
平均数
一、
意义
一组数中间的一个数或中间两个数的平均数。
一组数中出现次数最多的数。
反映一组数的总体水平的数据。
计算方法
中间的一个数或中间两个数的和
÷2
出现次数最多的数
平均数=总数÷份数
(二)可能性
事件状态
一定会发生
一定不会发生
可能发生
生活情景
太阳从东方升起
鸭子会讲话
今天会下雨
数学情景
从5个红球中摸出一个红球
从5个红球中摸出一个白球
从5个红球,1个白球中摸出一个白球
二、在可能性相同的情况下,比赛游戏规则是公平的。

我眼中的苏轼-三校生自主招生


吉林师范大学就业网-广西梧州学院


上海中共一大会址纪念馆-爱情片排行榜


小学生日记50字-认知实习报告范文


拔苗助长读后感-法务实习报告


出入境检验检疫局-春联大全七字


祷告的意思-大学生实习心得体会


台州科技职业-教师寄语