人版小学六年级(下册)数学(全册)教(学)案

余年寄山水
775次浏览
2020年10月04日 17:58
最佳经验
本文由作者推荐

南充市人事网-青芒果

2020年10月4日发(作者:费晴湖)


.
第十二册数学教学备课教案

第一单元 认识负数
教学容:
人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、
例2。
教学目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负
数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生
活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感
和数学态度。
教学重、难点:
负数的意义。
教学过程:
一、谈话交流 < br>谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、
坐下。)今天的数学课 我们就从这个话题聊起。(板书:相反。)我们周围有很
多的自然和社会现象中都存在着相反的情况,太 阳每天从东方升起,西方落下;
公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上 有输也
有赢……你能举出一些这样的现象吗?
二、教学新知
1.表示相反意义的量。
(1)引入实例。
谈话:如果沿着刚才的话题继续“聊” 下去的话,就很自然地走进数学,我
们一起来看几个例子(课件出示)。
① 六年级上学期转来6人,本学期转走6人。
② 阿姨做生意,二月份盈利1500元,三月份亏损200元。
③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。
④ 一个蓄水池夏季水位上升米,冬季水位下降米。
. . .


.
指出:这些相反的词语 和具体的数量结合起来,就成了一组组“相反意义的
量”。(补充板书:相反意义的量。)
(2)尝试。
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
……
(3)展示交流。
……
2.认识正、负数。
(1)引入正、负数。
谈话:刚才,有同 学在6的前面写上“+”表示转来6人,添上“-”表示
转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正 六。我们可以在6的前面加上“+”,也
可以省略不写(板书:6)。其实,过去我们认识的很多数都是 正数。
(2)试一试。
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识。
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
① 同桌交流。
② 全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:… …) < br>强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整
数、正小数、正分数; 在它们的前面添上负号,就成了负整数、负小数、负分数,
统称负数。
4.进一步认识“0”。
(1)看一看、读一读。
. . .


.
谈话:接 下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气
温情况(课件出示)。
: -15 ℃~-3 ℃

北京: -5 ℃~5 ℃

: 12 ℃~23 ℃

温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说。
我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五
度”,表示零下5度;5 ℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻
度数)为什么?
现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)
说一说,你怎么这么快就找到了?
(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)
你能很快找到12 ℃、-3 ℃吗?
(3)提升认识。
请学生观察温度计,说一说有什么发现?
在 学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,
零下温度都用负数来表示。(或 负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数
也不是负数。
(4)总结归纳。
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”
进行重新分类:
(完善板书。)
5.练一练。
读一读,填一填。(练习一第1题。)
. . .


.
6.出示课题。
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今< br>天的数学课定一个课题吗?
根据学生的回答总结本节课所学容,并选择板书课题:认识负数。
7.负数的历史。
(1)介绍。
其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音
播放):
“中国是世界上最早认识和运用负数的国家,早在2000多年前,我国古
代数学著作《九章算术》中对 正数和负数就有了记载。魏朝数学家徽在该书的注
文中则更进一步地概括了正、负数的意义:‘两算得失 相反,要令正负以名之。’
古代用算筹表示数,这句话的意思是:‘两种得失相反的数,分别叫做正数和 负
数。’并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方
便,到了十三 世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外
对负数的认识经历了曲折的过程,并且 也出现了各种表示负数的形式,直到20
世纪初,才形成了现在的形式。但比中国晚了数百年!”
(2)交流。
简单了解了负数的历史,你有什么感受?
三、练习应用
今 天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进
生活,感受数与生活的密切联系 。
课件逐一出示:
1.表示海拔高度。(“做一做”第2题。)
通常,我们规定 海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43
米,可以记作___________ __;吐鲁番盆地大约比海平面低155米,它的海拔高度
应记作_____________。
2.表示温度。(练习一第2题。)
月球表面白天的平均温度是零上126℃,记作_________℃, 夜间的平均温
度为零下150℃,记作_____________℃。
3.(出示电梯按钮 图)小红的家在五楼,储藏室在地下一楼。如果她要回
家,按哪个按钮?如果到储藏室取东西呢?
. . .


.
4.表示时间。(练习一第3题。)
5. “净含量:10±0.1kg”表示什么意思?
四、总结延伸
1.学生交流收获。
2.总结。
简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;< br>走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中
会有更多的收获。

第二单元 圆柱与圆锥
单元目标:
1、使学生认识圆柱和圆锥,掌 握它们的特征;认识圆柱的底面、侧面和高;
认识圆锥的底面和高。
2、使学生理解求圆柱的侧面积和表面积的计算方法,并会正确计算。
3、使学生理解求圆柱 、圆锥体积的计算公式,会运用公式计算体积、容积,
解决有关的简单实际问题。
单元重点:
掌握圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式。
单元难点:
圆柱、圆锥体积的计算公式的推导

1、圆柱
(1)圆柱的认识
教学容:教科书第10—12页圆柱的认识,练习二的第1—4题.
教学目标:
1 、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看
懂圆柱的平面图;认识圆柱侧面 的展开图。
2、培养学生细致的观察能力和一定的空间想像能力。
3、激发学生学习的兴趣。
教学重点:认识圆柱的特征。
教学难点:看懂圆柱的平面图。
. . .


.
教学过程:
一、复习
1.已知圆的半径或直径,怎样 计算圆的周长?(指名学生回答,使学生熟
悉圆的周长公式:C=2πr或C=πd)
2.求下面各圆的周长(教师依次出示题目,然后指名学生回答,其他学生
评判答案是否正确)
(1)半径是1米 (2)直径是3厘米
(3)半径是2分米 (4)直径是5分米
二、认识圆柱特征
1.整体感知圆柱
(1)谈谈圆柱.你喜 欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实
用、安全、可滚动……)
(2)找找圆柱,请同学找出生活中圆柱形的物体。
2.圆柱的表面
(1)摸摸圆柱。请同学摸摸自己手中圆柱的表面,说说发现了什么?
(2)指导看书:摸到 的上下两个面叫什么?它们的形状大小如何?摸到的
圆柱周围的曲面叫什么?(上下两个面叫做底面,它 们是完全相同的两个圆。圆
柱的曲面叫侧面。)
3.圆柱的高
(1)课件显示:一 根竖放的大针管中的药水由高到低的变化过程,引导学
生思考:药水水柱的高低和水柱的什么有关?
(2)引导小结:水柱的高低和水柱的高有关.
(3)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫
做高。)
(4)讨论交流:圆柱的高的特点。
①课件显示:装满牙签的塑料盒,问:这些牙签是圆柱的 高吗?假如牙签细
一些,再细一些,能装多少根?
②初步感知:面对圆柱的高,你想说些什么?
归纳小结并板书:圆柱的高有无数条,高的长度都相等。
③深化感知:面对这数不清的高,测量哪一条最为简便?
. . .


.
老师引导 学生操作分析,得出测量圆柱边上的这条高最为简便,同时课件上
的圆柱体闪烁边上的一条高.
4.圆柱的侧面展开(例2)
(1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体 胶水等有商
标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.
反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四
边形的是怎样剪的?
┌长方形
板书:沿高剪┤ 斜着剪:平行四边形
└正方形
强调:我们先研究具有代表性的长方形与圆柱的关系.
(2)寻求发现.展开的长方形的长和宽与圆柱的关系.
①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。
②学生再观察电 脑演示上述过程.(用彩色线条突出圆柱底面周长和高转化
成长方形长和宽的过程。)
③同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就
是圆柱的高。
(3)延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。
①讨论:平行四边形能否通过什么方法转化成长方形?
课件显示:平行四边形通过割补转变成长方形,再还原成圆柱侧面的动画过
程。
②想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?
③引导小结:不管侧面怎样剪 ,得到各种图形,都能通过割补的方法转化成
长方形.其中正方形是特殊的长方形.
三、巩固练习
1.做第11页“做一做”的第2题。
2.做第15页练习二的第3题。
教师行间巡视,对有困难的学生及时辅导。
3.做第15页练习二的第4题。
四、布置作业
完成一课三练P15的1、2题。
. . .


.
板书:
┌长方形
沿高剪┤ 斜着剪:平行四边形
└正方形
圆柱的底面周长 → 长方形的长
圆柱的高 → 长方形的宽






(2)圆柱的表面积
教学容:P13-14页例3-例4,完成“做一做”及练习二的部分习题。
教学目标: < br>1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱
侧面积和表面积的计算 方法,会正确计算圆柱的侧面积和表面积,能解决一些有
关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
3、通过实践操作,在学生理解 圆柱侧面积和表面的含义的同时,培养学生
的理解能力和探索意识。
教学重点:掌握圆柱侧面积和表面积的计算方法。
教学难点:运用所学的知识解决简单的实际问题。
教学过程:
一、复习
1.指名学生说出圆柱的特征.
2.口头回答下面问题.
(1)一个圆形花池,直径是5米,周长是多少?
(2)长方形的面积怎样计算?
板书:长方形的面积=长×宽.
二、新课
. . .


.
1.圆柱的侧面积。
(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什
么关系呢?
(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)
(3)那么,圆柱的侧面积应该 怎样计算呢?(引导学生根据展开后的长方
形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧 面积=底面周长×
高)
2.侧面积练习:练习七第5题
(1)学生审题,回答下面的问题:
① 这两道题分别已知什么,求什么?
② 计算结果要注意什么?
(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。
(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和 高这两个条件,
有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要
注意看清题意再列式。
3. 理解圆柱表面积的含义.
(1)让学生把自己制作的圆柱模型 展开,观察一下,圆柱的表面由哪几个
部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底 面和侧面组成。)
(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底
面的面积。
公式:圆柱的表面积=圆柱的侧面积+底面积×2
4.教学例4
(1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求
表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,
说明它只有一个底面) (3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察
看最后的得数是否计算正 确。(做完后,集体订正。指名学生回答自己在计算时,
最后的得数是怎样取得的。由此指出:这道题使 用的材料要比计算得到的结果多
. . .


.
一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米 ,省
略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一
法。)
① 侧面积:3.14×20×28=1758.4(平方厘米)
② 底面积:3.14×(20÷2)2=314(平方厘米)
③ 表面积:1758.4+314=2072.4≈2080(平方厘米)
5.小结:
在实际 应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面
积.如计算烟筒用铁皮只求一个侧面积 ;水桶用铁皮是侧面积加上一个底面积;
油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进 一法取值,以保
证原材料够用.
三、巩固练习
1.做第14页“做一做”。(求表面积包括哪些部分?)
2. 练习七第6题。
板书:
圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+底面积×2
例4:① 侧面积:3.14×20×28=1758.4(平方厘米)
② 底面积:3.14×(20÷2)2=314(平方厘米)
③ 表面积:1758.4+314=2072.4≈2080(平方厘米)

圆柱的表面积练习课
教学容:练习二余下的练习。
教学目标:
1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
教学重点:
运用所学的知识解决简单的实际问题。
教学难点:
运用所学的知识解决简单的实际问题。
教学过程:
. . .


.
一、复习
1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)
2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)
3、练习二第14 题:根据已知条件求出圆柱的侧面积和表面积。(第②题已
知圆柱的底面周长,对于求侧面积较有利。但 在求底面积时,要先应用C÷π÷2
来求出圆柱的底面半径)
二、实际应用
1、练习二第13题
(1)复习长方体、正方体的表面积公式:
长方体的表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长×棱长×6
(2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指
名板演。
2、练习二第7题
(1)用教具辅助,引导学生思考:前轮转动一周,压路面的面积是指什么 ?
(通过圆柱教具的直观演示,使学生看到所压路面的面积就是前轮的侧面积)
(2)学生独立完成这道题,集体订正。
3、练习二第9题
(1)学生通过读题理 解题意,思考“抹水泥的部分”是指哪几个面?(侧
面和下底面,也就是只有一个底面积)
(2)指名板演,其他学生独立完成于课堂练习本上。
4、练习二第16题
(1)学生读题理解题意后尝试独立解题。
(2)集体评讲,让学生理解计算“制作中间的轴 需要多大的硬纸板”,就
是计算硬纸轴的侧面积,卫生纸的宽度就是硬纸板的高度。
5、练习二第19题
(1)学生小组讨论:可以漆色的面有哪些?
(2)通过教具 演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆
柱的三个底面积。因此,计算油漆的面积就是 计算长方体表面积与圆柱侧面积之
和减去圆柱的一个底面积。
. . .


.
(3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保
留近似数。
三、布置作业
练习二第8、10、15、17、18及20题完成在作业本上。
板书:
圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+底面积×2
长方体的表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长×棱长×6


(3)圆柱的体积
教学容:P19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4
题。
教学目标:
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,
能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
3、渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:圆柱体积的计算公式的推导。
教学过程:
一、复习
1、长方 体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正
方体体积的统一公式“底面积×高”, 即长方体的体积=底面积×高)
2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是
什么,怎么求。 < br>3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方
形,找出圆和所拼成的 长方形之间的关系,再利用求长方形面积的计算公式导出
求圆面积的计算公式。
二、新课
. . .


.
1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求 出圆的面积的方法来推导圆柱的体积。(沿
着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等 的16块,把它们
拼成一个近似长方体的立体图形——课件演示)
(2)由于我们分的不够细 ,所以看起来还不太像长方体;如果分成的扇形
越多,拼成的立体图形就越接近于长方体了。(课件演示 将圆柱细分,拼成一个
长方体)
(3)通过观察,使学生明确:长方体的底面积等于圆柱的底 面积,长方体
的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×
高 ,V=Sh)
2、教学补充例题
(1)出示补充例题:一根圆柱形钢材,底面积是50平方 厘米,高是2.1
米。它的体积是多少?
(2)指名学生分别回答下面的问题:
① 这道题已知什么?求什么?
② 能不能根据公式直接计算?
③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要
先统一计量单位)
(3)出示下面几种解答方案,让学生判断哪个是正确的.
①V=Sh
50×2.1=105(立方厘米)
答:它的体积是105立方厘米。
②2.1米=210厘米
V=Sh
50×210=10500(立方厘米)
答:它的体积是10500立方厘米。
③50平方厘米=0.5平方米
V=Sh
0.5×2.1=1.05(立方米)
答:它的体积是1.05立方米。
④50平方厘米=0.005平方米
. . .


.
V=Sh
0.005×2.1=0.0105(立方米)
答:它的体积是0.0105立方米。 < br>先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解
答更简单.对不正确的 第①、③种解答要说说错在什么地方.
(4)做第20页的“做一做”。
学生独立做在练习本上,做完后集体订正.
3、引导思考:如果已知圆柱底面半径r和高h, 圆柱体积的计算公式是怎
样的?(V=πr2h)
4、教学例6
(1)出示例5, 并让学生思考:要知道杯子能不能装下这袋牛奶,得先知
道什么?(应先知道杯子的容积)
(2)学生尝试完成例6。
① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)
5、比较 一下补充例题、例6有哪些相同的地方和不同的地方?(相同的是
都要用圆柱的体积计算公式进行计算; 不同的是补充例题已给出底面积,可直接
应用公式计算;例6只知道底面直径,要先求底面积,再求体积 .)
三、巩固练习
1、做第21页练习三的第1题.
2、练习三的第2题. < br>这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学
生审题后,知道要先求 出底面积,再求圆柱的体积。
四、布置作业
练习三第3、4题。
板书:
圆柱的体积=底面积×高 V=Sh或V=πr2h
例6:① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24
(cm2)
② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)
圆柱的体积练习课
. . .


.
教学目标:
1、使学生能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
4、渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:灵活应用圆柱的体积公式解决实际问题。
教学过程:
一、复习
1、复习圆柱体积的推导过程
长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh。
2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。
二、解决实际问题
1、练习三第7题。
学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。
2、练习三第5题。
(1)指导学生变换公式:因为V=Sh,所以h=V÷S。也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
3、练习三第8题。
(1)学生读题后 ,指名说说对题意的理解:求减少的土方石就是求月亮门
所占的空间,而月亮门所占的空间是一个底面直 径为2米,高为0.25米的圆柱。
(2)在充分理解题意后学生独立完成,集体订正。
4、练习三第9、10题
(1)学生独立审题,完成9、10两题。
(2)评讲第 9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求
出什么?怎么求?(需先求出圆柱形玻 璃杯的容积,用公式V=Sh)
(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一 条件,
先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。
三、布置作业
完成“一课三练”的相关练习。

. . .


.


2、圆锥
(1)圆锥的认识
教学容:教科书P23-26的容,P24“做一做”,完成练习四的第1、2题。
教学目标:
1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会
正确测量圆锥的高,能根据实验材料正确制作圆锥。
2、通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的
空间想象能力。
3、培养学生的自主探索意识,激发学生强烈的求知欲望。
教学重点:掌握圆锥的特征。
教学难点:正确理解圆锥的组成。
教学过程:
一、复习
1、圆柱体积的计算公式是什么?
2、圆柱的特征是什么?
二、新课
1、圆锥的认识
(1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结< br>果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。
(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其
圆心O)
(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)
(4)让学生看着教 具,指出:从圆锥的顶点到底面圆心的距离叫做高。(沿
着曲面上的线都不是圆锥的高,由于圆锥只有一 个顶点,所以圆锥只有一条高)
2、小结
圆锥的特征(可以启发学生总结),强调底面和高 的特点,使学生弄清圆锥
的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.
3、测量圆锥的高
. . .


.
由于圆锥的高在它的部,我们不能直接量出它的长度,这就需要借助一块平
板来测量。
(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;
(3)竖直地量出平板和底面之间的距离。
4、教学圆锥侧面的展开图
(1)学生猜想圆锥的侧面展开后会是什么图形呢?
(2)实验来得出圆锥的侧面展开后是一个扇形。
5、虚拟的圆锥
(1)先让学生 猜测:一个长方形通过旋转,可以形成一个圆柱。那么将三
角形制片绕着一条直角边旋转,会形成什么形 状?
(2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。
三、课堂练习
1、做第24页“做一做”的题目。
让学生拿出课前准备好的模型纸 样,先做成圆锥,然后让学生试着独立量出
它的底面直径.教师行间巡视,对有困难的学生及时辅导。
2、练习四的第1题。
(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。
(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。
3.完成练习四的第2题。
四、总结
关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?


(2)圆锥的体积
教学容:第25~26页,例2、例3及练习四的第3~8题。
教学目的:
1、通 过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关
系,初步掌握圆锥体积的计算公式, 并能运用公式正确地计算圆锥的体积,解决
实际生活中有关圆锥体积计算的简单问题。
. . .


.
2、借助 已有的生活和学习经验,在小组活动过程中,培养学生的动手操作
能力和自主探索能力。
3、 通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意
识,发展学生的空间观念。
教学重点:掌握圆锥体积的计算公式。
教学难点:正确探索出圆锥体积和圆柱体积之间的关系。
教学过程:
一、复习
1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和
顶点)
2、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。
二、新课
1、教学圆锥体积的计算公式。
(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱 的体积是通过
切拼成长方体来求得的.
(2)圆锥的体积该怎样求呢?能不能也通过已学过的 图形来求呢?(指出:
我们可以通过实验的方法,得到计算圆锥体积的公式)
(3)拿出等底 等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆
锥和圆柱是等底等高的,下面我们通过实验, 看看它们之间的体积有什么关
系?”
(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把
圆柱装满?
(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)
(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 )
板书:圆锥的体积= ×圆柱的体积= ×底面积×高,字母公式:V= Sh
2、教学练习四第3题
(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?
(2)引导学生对照 圆锥体积的计算公式代入数据,然后让学生自己进行计
算,做完后集体订正。
3、巩固练习:完成练习四第4题。
. . .


.
4、教学例3.
(1)出示例3
已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。
(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所
以可利用圆锥的体积公式来求 ,需先已知沙堆的底面积和高)
(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆 的底
面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出
沙堆的体积 )
(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26
页上.做完后 集体订正。(注意学生最后得数的取舍方法是否正确)
四、巩固练习
1、做练习四的第7题。
学生先独立判断这三句话是否正确,然后全般核对评讲。
2、做练习四的第8题。
(1)引导学生学生思考回答以下问题:
① 这道题已知什么?求什么?
② 求圆锥的体积必须知道什么?
③ 求出这堆煤的体积后,应该怎样计算这堆煤的重量?
(2)让学生做在练习本上,教师巡视,做完后集体订正。
3、做练习四的第6题。
(1)指名学生先后回答下面问题:
① 圆柱的侧面积等于多少?
② 圆柱的表面积的含义是什么?怎样计算?
③ 圆柱体积的计算公式是什么?
④ 圆锥的体积公式是什么?
(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。
五、总结
这节课学习了哪些容?你是如何准确地记住圆锥的体积公式的?
板书:
圆柱的体积=底面积×高
圆锥的体积= ×圆柱的体积= ×底面积×高
. . .


.
字母公式:V= Sh


3、整理和复习
教学容:P29页第1-3题,完成练习五。
教学目的:
1、复 习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、
圆锥的特征和它们的体积之间的联系 与区别,掌握圆柱表面积、体积,圆锥体积
的计算公式,能正确计算。
2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。
3、学生认真的学习态度。
教学重点:圆柱、圆锥表面积、体积的计算
教学难点:圆柱、圆锥的特征和它们的体积之间的联系与区别
教学过程:
一、复习圆柱
1、圆柱的特征
(1)教师出示画有形状、大小以及摆放位置不同的 几个圆柱的幻灯片.指
名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?(圆柱是立体图形,
圆柱有上、下两个面叫做底面,它们是完全相同的两个圆.两个底面之间的距离
叫做高.侧面是 一个曲面.)
(2)做第29页第1题:指出几个图形中哪些是圆柱。
2、圆柱的侧面积和表面积
(1)出示画有圆柱的表面展开图的投影片.先让学生观察,然后 让学生回
答:圆柱的侧面是指哪一部分?它是什么形状的?(长方形或正方形)圆柱的侧
面积怎 样计算?(底面的周长×高)为什么要这样计算?(因为:底面的周长=
长方形的长,高=长方形的宽)
(2)表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积)
(3)第29页第2题中求圆柱表面积的部分。
3、圆柱的体积
(1)圆柱的体积 怎样计算?(底面积×高)计算公式是怎样推导出来的?
(把圆柱切割开,拼成近似的长方体,使圆柱体 的体积转化为长方体的体积。根
. . .


.
据长方体的体积=底面积×高,推出圆柱体的体积=底面积×高)圆柱体的 体积
计算的字母公式是什么?(V=Sh)
(2)做第29页第2题中关于圆柱体积的部分。
4、学生独立完成第29页第3题。(先思考“用多少布料”求什么?“装多
少水”又是求什么 ?区分清所求的是圆柱的表面积或体积时再计算)
二、复习圆锥
1.圆锥的特征
(1)圆锥有哪几个部分?有什么特点?(是立体图形,有一个顶点,底面
是一个圆,侧面是一个曲面。 从圆锥的顶点到底面圆心的距离,叫做圆锥的高。)
(2)做第91页第1题的下半题和第2题的第(3)小题.
让学生将圆锥的特征自己用简单 的词汇填写在表中.教师提醒学生:“举
例”一栏要填写自己知道的形状是圆锥的实物.
2.圆锥的体积.
(1)怎样计算圆锥的体积?(用底面积×高,再除以3)计算圆锥体积的
字母公式是什么?(V= Sh)这个计算公式是怎样得到的?(通过实验得到的,
圆锥体的体 积等于和它等底等高的圆柱体体积的三分之一)
(2)做第29页第2题中有关圆锥体积的部分。
三、课堂练习
1、做练习五的第1题。(学生独立判断,并画出高,小组讨论订正)
2、做练习五的第2题。
(1)学生审题后思考:求用多少彩纸是求圆柱的什么?
(2)指名板演,其他学生独立完成于课堂练习本上。
3、做练习五第5题。(可建议学生用方程解答)
四、作业
练习五的第3、4、6题。

第三单元、比例的意义和基本性质
教学容:教科书第1-2页比例的意义和基本性质,练习一的第l~3题。
教学目的:使学生理解比例的意义和基本性质。
. . .


.
教学重点;比例的意义和基本性质
教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。
教学过程:
一、教学比例的意义
1.复习。
(1)教师:请同学们回忆一下上 学期我们学过的比的知识,谁能说说
什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把学生举的例子板书出来,并注明比的各部分的名称。
(2)教师:我们知道了比的前 后项相除所得的商叫做比值,你们会求
比值吗?教师板书出下面几组比,让学生求出它们的比值。
12:16

4.5:2.7 10:6
学生求出各比的比值后,再提问:
“请同学们观察一下,哪两个比的比值相等?”(4.5:2.7 的比值和10:6
的比值相等。)
教师说明:因为这两个比的比值相等,所以这两个比也是 相等的,我们把
它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子
叫做什么呢?这就是这节课我们要学习的容。(板书课题:比例的意义)
2.教学比例的意义。
(l)出示例1:指名学生读题。
教师:这道题涉及到 时间和路程两个量的关系,我们用表格把它们表示出
来。表格的第一栏表示时间,单位“时”,第二栏表 示路程,单位“千米”。
. . .


.
这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问
边填写表格。)
时间(时)
路程(千米)
2
80
5
200
“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”
教师根据学生的回答,板书:
第一次所行驶的路程和时间的比是80:2
第二次所行驶的路程和时间的比是200:5
然后让学生算出这两个比的比值。指名学生回 答,教师板书:80:2=40,
200:5=40。让学生观察这两个比的比值。再提问:你们发现了 什么?”(这
两个比的比值都是40。)
“所以这两个比怎么样?(这两个比相等。)
教师说明:因为这两个比相等,所以可以把它们用等号连起来。(板书:80:2
=200:5 )像这样(指着这个式子和复习题的式子4.5:2.7=10:6)表示两个
比相等的式子叫做比例。 指着比例式80:2=200:5,提问: “谁能说说什么叫
做比例?”引导学生观察是表示两个比相 等。然后板书:表示两个比相等的式子
叫做比例。并让学生齐读一遍。
“从比例的意义我们 可以知道,比例是由几个比组成的?这两个比必须具备
什么条件?因此判断两个比能不能组成比例,关键 是看什么?如果不能一眼看出
两个比是不是相等的,怎么办?”
根据学生的回答,教师小结 :通过上面的学习,我们知道了比例是由两个相
等的比组成的。在判断两个比能不能组成比例时,关键是 看这两个比是不是相等。
如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如
. . .


.
判断10:12和35: 42这两个比能不能组成比例,先要算出 10: 12=
=,所以 10:12=35:42。(以上举例边说边板书。)
,35: 42
(2)比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道 了“比例”的意义,那么“比”
和“比例”有什么区别呢?
引导学生从意义上、项数上进行 对比,最后教师归纳:比是表示两个数
相除,有两项;比例是一个等式,表示两个比相等,有四项。
(3)巩固练习。
①用手势判断下面卡片上的两个比能不能组成比例。(能,就用开拇指和 食
指表示;不能就用两手的食指交叉表示。)
6:3和12:6
20:5和16:8
35:7和45:9
0.8:0.4和0.3 :0.6


学生判断后,指名说出判断的根据。
②做第2页的“做一做”。
让学生看书,不抄题,直接把能组成比例的两个比写在练习本上 ,教师边巡
视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。
③给出2、3、4、6四个数,让学生组成不同的比例(不要求举全)。
④做练习一的第3题。
对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立
就可以。
. . .


.
第4小题,给出的四个数都是分数,在写比例式时,也要让学生写成分数形
式。
二、教学比例的基本性质
1.教学比例各部分的名称。
教师:同学们能正确地 判断两个比能不能组成比例了,那么比例各部分的名
称是什么?请同学们翻开教科书第10页看第6行到 9行。看看什么叫比例的项、
外项、项。(学生看书时,教师板书:80:2=200:5)
指名让学生指出板书出的比例的外项、项。随着学生的回答教师接着板书如
下:
2.教学比例的基本性质。
教师:我们知道了比例各部分的名称,那么比例有什么性质呢? 现在我们就
来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个
比例 中两个项的积和两个外项的积。教师板书:
两个外项的积是80×5=400
两个项的积是 2×200=400
“你发现了什么?”(两个外项的积等于两个项的积。 )板书:80×5=
2×200“是不是所有的比例都成立都是这样的呢?”让学生分组计算前面判断< br>过的比例式。
通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来?”可多让一些学生说,说得不完整也没关系,让后说的同学在先
说的同学的基础上说 得更完整。
最后教师归纳并板书出:在比例里,两个外项的积等于两个项的积。并说明
这叫 做比例的基本性质。
. . .


.
“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80 :2
=200:5)教师边问边改写成:
“这个比例的外项是哪两个数呢?项呢?”
“因为两个项的积等于两个外项的积,所以,当比例写成分数的形式,等号
两端的分子和分母分 别交叉相乘的积怎么样?”边问边画出交叉线,如:
学生回答后,教师强调:如果把比例写成分数形式, 比例的基本性质就是等
号两端分子和分母分别交叉相乘,积相等。板书:
3.巩固练习。
教师:前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断
的。
学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能
成比例。
(1)应用比例的基本性质判断3:4和6:8能不能组成比例。
教师:我们可以这样想: 先假设3:4和6:8可以组成比例。再算出两个外项
的积(板书:两个外项的积: 3×8= 24)和两个项的积(板书:两个项的积:
4 × 6=24)。因为 3 × 8=4 × 6(板 书出来),也就是说两个外项的积等
于两个项的积,所以3:4和6:8可以组成比例。(边说边板书: 3:4=6:8)
(2)做第3页“做一做”的第1、题。
三、小结
教师 :通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是
什么?应用比例的基本性质可以做 什么?
80×5=2×200

. . .


.
四、练习:
1、说说比和比例有什么区别
2、填空
3、先应用比的意义,再应用比的基本性质,判断下面那组中的两个比可以
组成比例。
(1) 6:9和 9 :12 (2)1.4 :2 和 7:10 (3)
0.5 :0 .2和58 :14
4、下面的四个数可以组成比例吗?把组成的比例写出来。(能写成几组就
组几组)
2 、3 、4和6
四、作业
练习一的第3题。



2、解比例
教学容:教科书第3页解比例的容,练习一的第4~9题。
教学目的:使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
教学重点:使学生掌握解比例的方法,学会解比例。
. . .


.
教学难点 :引导学生根据比例的基本性质,将比例改写成两个项的积等于两
个外项积的形式,即已学过的含有未知 数的等式。
教学过程:
一、导人新课
教师:上节课我们学习了一些比例的知 识,谁能说一说什么叫做比
例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识,这节课我们要学习解比例。(板书课题)
二、新课
教师:什么叫做解比例呢?我们知道比例共有四项,如果知道其中的任
何三项,就可以求出这个比例中 的另外一个未知项。求比例中的未知项,叫
做解比例。解比例要根据比例的基本性质来解。
1.教学例2。
出示例2:
让学生指出这个比例的外项、项,并说明知道哪三项,求哪一项。再回答:
“根据比例的基本性质可以把它变成什么形式?”教师板书:3x=8×15。
“这变成了什么?”(方程。)
教师说明:这样解比例就变成解方程了,利用以前学过的解 方程的方法就
可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。
(在3x前加上:解:)
“怎样解这个方程?”(根据乘法各部分间的关系,把x看作一个因数,因
为一个因=积÷另一个因数,可以求出x。)教师板书:
. . .


.
教师:从 刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把
比例变成方程,然后用解方程的方法来 求未知数x。
2.教学例3。
出示例3:解比例
提问:
9X = 4.50.8
“这个比例与例 2有什么不同?”(这个比例是分数形式。)
“这种 分数形式的比例也能根据比例的基本性质,变成方程来求解吗?”
(能,根据比例的基本性质,把等号两 端的分子和分母分别交叉相乘,就得出
方程。)
学生回答后,教师说明在写方程时,含有未 知数的积通常写在等号的左边,
然后板书:4.5x=9×0.8
“这个方程你们会解吗?”
让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。
3.总结解比例的过程。
提问:
“刚才我们学习了解比例,大家回忆一下,解 比例首先要做什么?”(根据
比例的基本性质把比例变成方程。)
“变成方程以后,再怎么做?”(根据以前学过的解方程的方法求解。)
“从上面的过程可 以看出,在解比例的过程中哪一步是新知识?”(根据比
例的基本性质把比例变成方程。)
4.做第3页“做一做”的第2题。
. . .


.
学生独立解答,订正时,让学生说说是怎么做的。
三、巩固练习
做练习一的第4~9题。
1.做第4题的第(6)题时,要提醒学生先把带分数化成假分数 再做。做完
后,选一、二题让学生说说是怎样求解的。
2.第5题,可指名学生读题,题目 告诉了什么,要求什么,然后同桌同学
讨论一下,这道题可以用什么知识解答。再选几名代表出答。之后 ,让学生独立
解答。
3.独立完成第6、7题。
四、学有余力的学生做第8
*
、9
*
题和思考题
做第8 “题的第(1)题,教师可以这样引导学生:这道题需要逆用比例的
基本性质,比例的基本性质是:在一 个比例里,两个项的积等于两个外项的积。
现在这道题是知道两个积相等,如果我们把左边的两个数当作 比例的外项,那么
右边的两个数就应作为比例的项,这样就能推出比例式了。如果把左边的两个数
当作比例的项,那么右边的两个数就应作为比例的外项,也可以推出比例式。然
后让学生自己写出比例 式。写完后,教师板书出来。
如果把3、40作为外项,有下面这些比例式:
3:8=15:40
3:15=8:40
40:15=8:3
40:8=15:3
如果把3、40作为项,有下面这些比例式:
15:3=40:8
15:40=3:8
8:40=3:15
8:3=40:15
. . .


.
可能有的学生写比例式时是按照数的排列规律来写的,有些可能没什么规律
性。
学生做完后,可以通过讨论,使学生明确要按一定的顺序来写才能写全所有
的比例式。

3.比例尺
教学容:教科书第6~8页的例4~例6,练习二的第1题。 < br>教学目的:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,
以及根据比例尺求图 上距离或实际距离。
教学重点:理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。
教学难点:设未知数时长度单位的使用。
教具准备:教师准备一些比例尺不同的地图或本校、本地的平面图。
教学过程:
一、复习
二、新课
教师:前面我们学习了比例的知识,比例的知识在实际生活 中有什么
用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长
大约8米, 宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺
寸来绘制,需要多大的图纸?可能吗?如果 要画中国地图呢?于是,人们
就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离< br>按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如
机器零件等)的实际距离 扩大一定的倍数,再画在图纸上。不管是哪种情
. . .


.
况,都需要确定图上距 离和实际距离的比。这就是比例的知识在实际生活
中的一种应用。今天我们就来学习这方面的知识。
1.教学比例尺的意义。
(1)教学例4。
出示例4:
让学生读题。指名回答:
“这道题告诉我们什么?”(在平面图上用10厘米的距离表示地面上10
米的距离。)
“要我们做什么?”(求图上距离和实际距离的比。)板书:图上距离 :
实际距离
“图上距离知道吗?实际距离也知道吗?各是多少?”继续板书如下:
图上距离 :实际距离
10厘米 : 10米
“10厘米和10米的单位相同吗?能直接化简吗?”
教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化
简。
“是 把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作厘米
后实际距离仍是整数,计算起来比较 方便,所以要把米化作厘米。)
“10米等于多少厘米?”学生回答后,教师把10米改写成1000厘米。
“现在单位统 一了,是多少比多少,怎样化简?”教师边说边擦掉10和
1000后面的单位“厘米”,并加上“ :”,板书成如下形式:
. . .


.
图上距离 :实际距离
10 : 1000
请一名同学到黑板前化简这个比,别的同学在练习本上做。集体订正后,教
师写出这道题的“答 :…”。
然后说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际
距离的 比”,我们就给它起一个名字叫做“比例尺”。(板书:图上距离 :实际
距离=比例尺)有时图上距离和实际距离的比也可似写成分数形式。(板书:或
图上距离
=比例尺
实际距离
图上距离是比的前项,实际距离是比的后项 。为了计算简便,通常把比例尺
写成前项是1的最简单整数比。
教师出示比例尺不同的地图 和本地、本校的平面图给学生看,让学生说出它
们的比例尺各是多少,表示什么意思。
最后教师指出:
①比例尺与一般的尺不同,这是一个比,不应带计量单位。
②求比例尺时,前、后项的长度单位一定要化成同级单位。如 1O厘米:1O
米,要把后项的米化成厘米后再算出比例尺。
③为了计算简便,通常把比例 尺的前项化简成“1”,如果写成分数形式,
分子也应化简成“1”。比如,例4中的比例尺通常写成: 1:100=
(2)巩固练习。
. . .


.
让学生完成第6页的“ 做一做”。教师可提醒学生注意把图上距离和实际距
离的单位化成同级单位。集体订正时,要注意检查学 生求出的比例尺的前项是不
是“ l”。
2.教学根据比例尺求图上距离或实际距离。
教师:知道了一幅图的比例尺,我们可以根据图上距离求出实际距离,或者
根据实际距离求出图 上距离。
(1)教学例5。
出示例5:
指名读题,并说出题目告诉了什么 ,要求什么。(告诉了比例尺,又告诉
了到北京的图上距离,求到北京的实际距离。)
教师启发:因为
来求。
=比例尺,要求实际距离可以用解比例的方法
“这道题的图上距离是多少?”板书:15 < br>“实际距离不知道,怎么办?”(用
x
表示。)在15的下面板书出
x
,并
在它们中间画上分数线。
“因为图上距离和实际距离的单位要相同,所设的
x
应用什么单位?”(应
用厘米。)板书:解:设到北京的实际距离为
x
厘米。
“比例尺是多少?写成什么形式?”(写成分数形式。)最后板书成下面的
形式:
15 1

x
6000000
. . .


.
指定一名学生到前面求X的值,其他学生在练习本上做。订正后,回答:
“现在求出的实际 距离是多少厘米,题目要求的实际距离是多少千米。应该
怎么办?”板书:90000000厘米=90 0千米,并写出这道题的答。
之后,再回忆一下解答过程。
(2)巩固练习。
做第 7页上的“做一做”。先让学生说出图中的比例尺是多少,表示什么
意思,再用直尺量出 图中河西村与汽车站间的距离,然后计算出实际距离。集体
订正时,要注意检查学生是否把实际距离化成 了千米。
(3)教学例6。
出示例6:一个长方形操场,长110米,宽90米,把它 画在比例尺是
图纸上,长和宽各应画多少厘米?
指名读题并说出题目告诉了什么,求什么。 (告诉了操场的长和宽的实际距
离和比例尺,求长和宽的图上距离。)
教师:我们先来求长 的图上距离。长的图上距离不知道,应设为
x
。(板书:
解:设长应画
x厘米。)长的实际距离是多少?它和图上距离的单位相同吗?怎
么办?比例尺是多少?
然后让学生求
x
的值,并说出求解过程,教师板书出来。
“这道题做完了 吗?还要求宽的图上距离。宽的图上距离不知道,应用什么
未知数来表示呢?因为前面求长的图上距离时 ,已经用了
x
,这里就不能再用它
来表示宽的图上距离了,要用其它的字母来表示。我 们就用
y
来表示、”板书:
设宽应画
y
厘米。让学生把这道题做完。 最后教师写出这道题的答。
三、练习

. . .


.
1、判断下面这段话中,哪些是比例尺,哪些不是比例尺?为什么?
2、独立完成练习二第1题,并订正。
3、完成练习二的第2题、3题。
第3题, 让学生先想想比例尺子表示的意思。1厘米的图上距离相当于
100厘米的实际距离。)然后再量出图中 所示的宽和高,并计算出实际的宽和高
各是多少。集体订正时,要让学生说说计算出的实际的宽和高的单 位是什么。

4成正比例的量

教学要求 :
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成
正比例。
2、培养学生用发展变化的观点来分析问题的能力。培养学生概括
能力和分析判断能力。

教学重点:使学生理解正比例的意义
教学难点:引导学生通过观察、发现思考两种相关联的量的变化规律.
教学过程:
1、 复习:
已知路程和时间,求速度?
已知总价和数量,求单价?
已知工作总量和工作时间,求工作效率?
(1)
(2)
(3)
2 新知:
( 1)教学例1
投影出示:一列火车1小时行驶90千米,2小 时行驶180千米3小时行驶270
千米,4小时行驶360千米 ,5小时行驶450千米,6小时行驶540千米,7小时
行驶630千米,8小时行驶720千米 6……
. . .


.
(1)出示下表,填表
一列火车行驶的时间和路程
时间
路程
















填表 思考:再填表中你发现了什么?
点拨:时间变化,路程也随着变化,我们就说时间和 路程是两个相关联
的量.(板书:两种相关联的量)
根据计算,你发现了什么?
指出:相对应的两个数的比的比值一样或固定不变,在数学上叫做一定
用式子表示他们的关系是:路程时间=速度(一定)(板书)
(2)教师小结:
同学们通过填表 交流,知道时间和路程是.两种相关联的量,路程
随着时间的变化而变化.时间扩大, 路程随着扩大;时间缩小,路程也随着
缩小。即:路程时间=速度(一定)
2 、教学例2
(1)
数量
总价
花布的米数和总价表
1
8.2
2 3 4 5 6 7 ……
16.4 24.6 32.8 41.0 49.2 57.4 ……
(2)观察图表,发现什么规律?
用式子表示它们的关系:总价米数=单价(一定)
1 、抽象概括正比例的意义.
(1)比较例1、例2,思考并讨论:这两个例题有什么共同点?
(2)两种相关联的量,一 种量变化,另一种量也随着变化,如果这两
种量中相对应的两个数的比值(也就是商)一定,这两个量就 叫
做成正比例的量,它们的关系叫做正比例关系。
(3)看书,进一步理解正比例的意义。
(4)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),
正比例关系怎样用字 母表示出来?
Xy=k(一定)
. . .


.
(5)根 据正比例的意义以及表示正比例的式子想一想:构成正比例关
系的两种量必须具备哪些条件?
3 教学例3
出示例3:每袋面粉的重量一定,面粉的总重量和袋数,是不
是成正比例?
(2)
4
学生讨论解答
(1)
反馈练习:
第13页做一做,并订正.
五、课堂练习
1、 基本练习 第17页第1题订正时,必须让学生说明为什
么?
2、综合练习
(1)判断 第17页2题 说明理由
(2)举例说明正比例关系
六 板书设计
成正比例的量
例1 例2
901=90
2=90
2703=90 8.21=8.2
…… 16.42=8.2
路程/时间=速度(一定) 24.63=8.2……



5、成反比例的量
教学容:教科书第14-16页例4例6及做一做,练习三4到7题.
教学目的:理解反比例的意义;能根据反比例的意义,正确的判断两种量是否成反
. . .


.
比例.
教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积
一定,进而抽象 概括出成反比例的关系式.
教学难点:利用反比例的意义,正确判断两个量是否成反比例.
教学过程:
一. 铺垫孕伏
下面两种量是不是成正比例?为什么?
购 买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6
本.
2、成正比例的量有什么特征?
二. 探究新知
1、 导入新课:这节课我们继续学习常见的数量关系中的另一种
特征——成反比例的量。
2、 教学例4
(1)出示例4,提出观查思考要求:
从中你发现了什么?这与复习题相比有什么不同?
(2)学生讨论交流
(3)引导学生回答:
1)表中的两个量是每小时加工的数量和所须时间。
2)每小时加工的数量扩大,所须的时间反而缩小;每小时加工的
数量缩小,所须的时间反而扩大。
3)每两个相对应的数的乘积都是600
教师适时点拨:
想一想:每小时加工的数量和所须的时间是两种相关系的量吗?
为什么?
议一议:两种量的变换有什么规律?
(随着学生回答,教师板书:积一定)
教师提问:这个600实际上就是什么?(板书:零件总数一定)
教师指着板书提问:每小时加工数、加工时间和零件总是,怎样
. . .


.
用式子表示它们的关系?(教师板书:每小时加工数×加工时间=
零件总数)
3、教学例5
(1)
(2)
出示例5,根据题意学生口述填表。
观察上表你发现了什么?引导学生回答下列问题:
1)表中有哪两种量?(板书:每本数 装订本数)是相关量吗?
2)装订的本数是怎样随着每本的数变化的?
3)表中的两种量有什么变化规律?
(3)订正是板书:在原板书“每小时加工数变化,
加工时间下”板书“装订本数”。
(4)教师提问:这个积600实际是什么?(板书:纸的总数一定)
4、比较例4例5,概括反比例的意义。
(1)
(2)
请你比较例4例5,它们有什么相同点?(学生相互讨论)
学生回答
教师引导 学生明确:在例4中,所需的加工时间随着每小时加工
数量的变化而变化,并且每小时加工的数量和加工 的时间的积,也
就是零件的总数是一定的。我们就说每小时加工的数量和所需的加
工时间是成反 比例的。
议议:在例5中,有那两种相关联的量?它们是不是相关的量?
为什么? < br>1,教师:如果用字母x和y表示两种相关的量,用k表示它们的
积一定,反比例可以用一个什么 样的式子表示?(板书:x:y=k)
1、 教学例6
(1)
(2)
(3)
出示例6
学生交流
学生汇报,教师点拨
1)每天播种的公顷数和要用的天数是不是相关的量?
2)每天播种的公顷数和要用的天数有 什么关系?它们的积是
什么?这个积一定吗?(板书:每天播种的公顷数×天数=播种的
. . .


.
公顷数(一定) )
3)播种的公顷数一定,每天播种的公顷数和天数成反比例吗?
为什么?
2、完成做一做
(三)全课小节
这节课我们学习了成反比例的量,知道了什么样的 两个量是成反
比例的两个量,也学会了怎样判断两种量是不是成反比例。
(四)随堂练习
1、想一想:成反比例的量应具备什么条件?
2、练习三第4题
13、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
(五)布置作业
练习三第5~6题。






6 正比例和反比例的比较
教育目标:1、进一步理解正比例和反比 例的意义,弄清它们的联系和区别。掌
握它们的变化规律。
2、使学生能正确判断正、反比例。
3、发展学生分析、比较、抽象、概括能力,激发学生的学习兴趣。
. . .


.
教学难点:正反比例的联系和区别 。
教学重点:能判断正、反比例。
教学过程:
(1)
1、
2、
3、
4、
(2)
1、
2、
复习:判断
单价一定,数量和总价。
路程一定,速度和时间。
正方形的边长和它的面积。
时间一定,工效和工作总量。
新知:
出示课题:
教学例7
出示例7 表1
路程(千米)
时间(时)
表2
速度(千米时)
时间(时)
100
1
50
2
20
5
10
10
5
20
5
1
10
2
25
5
50
10
100
20
分组讨论、交流。
说一说怎样想的,同时填空。引导学生讨论回答。
总结路程、速度、时间三个量中每两个量之间的比例关系。速度×时间
=路程 路程时间=速度 路程速度=时间
3、 判断:
(1)
(2)
(3)
速度一定,路程和时间成什么比例?
路程一定,速度和时间成什么比例?
时间一定,路程和速度成什么比例?
4 、比较正比例、反比例的关系
使学生明确
正反比例的相同点:都有两种相关联的量,一种量随着另一种量变化。
不同点:正比例使变化相同,一种量扩大或缩小,另一种量也扩大或
. . .


.
缩小。相 对应的每两个数的比值(商)一定,反比例是变化相反,一种量扩大
(或缩小),另一种量反而缩小(扩 大)相对应的每两个量的积一定。
五、练习
1、 做一做
判断单价、数量和总价中的一种量一定,另外一种量成什么关系。为什
么?
单价一定,数量和总价— 总价一定 ,数量和单价—
数量一定,总价和单价—
2、 判断每题中的两个量是是成比例。如果成比例,是成正比例还是成
反比例关系,并说明理由。
3、 长方形的长、宽和面积三总量,如果长是一定的,宽和面积成正比
例关系。这三种量再什 么条件下还能组成比例关系,是哪种比例关
系。



7 比例的应用
教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。
2、使学生能利用正反比例的意义正确解答应用题。
培养学生的判断分析推理能力。
教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能
利用正反比例的 关系列出含有未知数的等式正确运用比例知识解答
应用题
教学难点:学生通过分析应用题的已 知条件和所求问题,却定那些量成什么比例
关系,并利用正反比例的意义列出等式。
教学过程:
(一)复习:
(二)新课
出示例1
. . .


.
(1)用以前方法解答。
(2)研究用比例的方法解答
题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么
系?
能不能利用这个关系式列比例解答?
解比例,同学自已完成,及时纠正。检验。
改变例1已知条件和问题3 教学例2比例应用
1、以前的发法解答。
2、怎样用比例知识解答?
3 讨论结果填书上。
4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程
来解答。


整理和复习
教学要求:
1、使学生进一步理解比例的意义和基本性质,能区分比和比例。
2、使学生能正确理解正、反比例的意义,能正确进行判断。
3、 培养学生的思维能力。
教学过程:
知识整理
1回顾本单元的学习容,形成支识网络。
2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互
相补充。
复习概念
什么叫比?比例?比和比例有什么区别?
什么叫解比例?怎样解比例,根据什么?
什么叫呈正比例的量和正比例关系?什么叫反比例的关系?
什么叫比例尺?关系式是什么?
. . .


.
基础练习
1填空
六年级二班少先队员的人数是六年级一班的89一班与二班人数比
是( )。
小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比
是( )。
甲乙两数的比是5:3。乙数是60,甲数是( )。
2、解比例
5x=103 4024=5x
3 、完成26页2、3题
综合练习
1、 A×16=B×15 A:B=( ):( )
2、9;3=36:12如果第三项减去12,那么第一项应减去多少?
3用5、2、15、6四个数组成两个比例( ):( )、( ):( )
实践与应用
1、如果A=CB那当( )一定时,( )和( )成正比例。
当( )一定时,( )和( )成反比例。
2、 一块直角三角形钢板用1200的比例尺画在纸上,这两条直
角边的和是5.4它们的比是5:4,这块 钢板的实际面积是多少?






板书设计: 整理和复习

比例的意义
比例 比例的性质
. . .


.
解比例

正反比例 正方比例的意义

正反比例的判断方法

比例应用题 正比例应用题
反比例应用体题





第四单元教学目标
1、通过本单元的教学,向学生渗透“理论来源于实践”的观点,进一
步发展学生的空间思维。
2、使学生认识圆柱和圆锥,掌握它们的特点;认识圆柱的底面、侧面
和高;认识圆锥的底面和高。
3、使学生理解求圆柱的侧面积、表面积的计算方法,并会计算。
4、使学生理解求圆柱、圆锥的体积的计算公式,会用公式计算体积、
容积,解决有关实际问题。
5、上有余力的学生初步认识球,知道球的各部分的名称及半径与直径
的关系



1、圆柱的认识
教学容:教科书第31—32页的容,完成“做一做”和练习七的第 1题。
教学目的:使学生认识圆柱的特征,能看懂圆柱的平面图;认识圆柱侧面的展
开图。
. . .


.
教具准 备:教师准备长方体形和正方体形的物体各一个,及多个圆柱形的物体
(如罐头盒、茶叶筒、药盒、药瓶 、纸盒等);让学生也收集几个圆柱
形的盒子,同时让学生将教科书上的图沿边剪下来。
教学过程:
一、复习
1、已知圆的半径或直径,怎样计算圆的周长?
指名学生回答,使学生熟悉圆的周长公式:C=2 Π r或C= Π D。
2、求下面各圆的周长(口算)。
教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确。
二、导入新课
教师手中先后拿一个长方体形的物体和正方体形的物体,提问:我手里拿
的物体是什么形状的?他们有 什么特征?
由此引导学生复习长方体和正方体的一些特征。
教师出示几个圆柱形的物体,“大家注意了,你们看看这些物体跟长方体、
正方体的形状一样吗?”
学生:不一样。
教师:请大家拿出自己准备好的跟老师一样的物体,看一看 ,摸一摸,你们
感觉它们与长方体有什么不一样?
三、新课
1、圆柱的认识。
让学生拿着圆柱形的物体观察和摆弄后,指定几名学生说出自己观察的结< br>果。从而使学生认识到长方体、正方体都是由平面围成的立体图形;而圆柱则有
一个曲面, 有两个面是圆,从上到下一样粗细,等等。
教师指出:像这样的物体就叫做圆校体,简称圆柱。这节课我们就来学习这
种新的立体图形。
板书课题:圆柱
教师:大家刚才认识了圆柱形的物体,我们把这些物体画在投影片上。出示有 圆
柱形物体的投影片。
教师:现在我们沿着这些圆柱形物体的轮廓画线,于是就可以得到这样的图形。
. . .


.
随后教师抽拉投影片,演示得到圆柱形物体的轮廓线。
然后指出:这样得到的图形就是圆柱体的几何图形。
教师:请大家再观察一下,这些圆柱的上、下两个面有什么特点?
引导学生发现:圆柱的上、下两个面都是平面,并且它们是完全相同的两个圆。
教师指出:圆柱的上、下两个面叫做底面。
然后在图上标出底面以及两个圆的圆心O。 同时还要指出:我们所学的圆柱是直圆柱的简称,即两个底面之间从上到下一样
粗细,高垂直于底面 。
接着让学生用手摸一摸圆柱周围的面,使学生发现圆柱有一个曲面,由此指
出:圆 柱的这个曲面叫做侧面。(在图上标出侧面。)
让学生看圆柱形物体,指出:圆柱的两个底面之间的距离叫做高。然后在图
上标出高。
提问:圆柱的高有多少条?他们之间有什么关系?
使学生明白:圆柱的高有无数条,他们都相等。
然后让学生拿出自己的学具,同桌的两名同学相互指出圆柱的两个底面、侧面和
高。
小结:圆柱的特征(可以启发学生总结),强调底面和高的特点。
上、下两个面都是面积相等的圆
圆柱
从上到下粗细相同
2、巩固练习
(1)做“做一做”的第2、3题。
要求学生说出日常生活中哪些物体是圆柱形的,如钢管、汽油桶、炉子姻简、
截面是圆形的铅笔等。
(2)出示一组立体图形,辨析哪些是圆柱,哪些不是圆柱?为什么?




. . .


.




2、圆柱的表面积
教学容:教科书第33—34页的例l一例3,完成“做一做”和练习七的第2—5
题。
教学 目的:使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面
积的计算方法。并根据圆柱的 表面积与侧面积的关系使学生学会运
用所学的知识解决简单的实际问题。
教具准备:圆柱形的物体,圆柱侧面的展开图
教学过程;
一、复习
1、指名学生说出圆柱的特征。
2、口头回答下面问题:

学生回答后板书:长方形的面积=长×宽
二、导入新课
教师:上节课我们认识了圆柱和圆柱的侧面展开图。请大家想一想,圆柱侧
面的展开图是什么图形?
教师出示上节课实验用的罐头盒,引导学生回忆实验过程:沿着罐头盒的一
条高剪开商 标纸,再打开,展开在黑板上,得到的是一个长方形。
教师:这个展开后的长方形与圆柱有什么关系?
学生:这个长方形的长等于圆柱的周长,长方形的宽等于圆往的高。
教师:那么,圆柱侧面积应该怎样计算呢?今天我们就来学习有关圆柱的侧
面积和表面积的计算。
三、新课
1,圆柱的侧面积。
板书课题:圆柱的侧面积。
. . .


.
教师:圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
教师边叙述边摸着圆柱的侧面演示给学生看,指出侧.面的大小就是圆柱的侧
面积。
教师:从上面的实验我们可以看出,这个展开后的长方形的面积和因拄的侧
面积有什么关系呢?
教师出示圆柱的侧面展开图,让学生观察很容易看到这个长方形的面积等于
圆柱的例面积。
教师:那么,圆柱的侧面积应该怎样计算呢?
引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知
道: 圆柱的侧面积=底面周长×高
(板书上面等式:)
2、教学例1:
出示例1
让学生回答下面的问题:
(1)这道题已知什么,求什么?
(2)计算结果要注意什么?
指定一名学生板演,其他学生在练习本上做。教师行间巡视,注意发现学生计
算中的错误,并及时纠正。 做完后,集体订正。
3、小结。
要计算圆柱的侧面积,必须知道圆柱底面 周长和高这两个条件,有时题里只
给出直径或半径.底面周长这个条件可以通过计算得到,在解题前要注 意看清题
意再列式:
4、理解圆柱表面积的含义。
教师:请大家把上节课自己制作的圆柱模型展开,观察一下,圆柱的表面由
哪几个部分组成?
通过操作,使学生认识到:圆柱的表面由上、下两个底面和侧面组成。
教师指着圆柱的展开图,“那么,圆柱的表面积是什么?”
指名学生回答,使大家明确:圆柱 的表面.积是指圆柱表面的面积,也就是
圆柱的侧面积加上两个底面的面积。
. . .


.
板书:圆柱的表面积=圆柱侧面积十两个底面的面积
教学例2。
出示例2的题目。
教颊:这道题已知什么?求什么?
学生:已知圆柱的高和底面半径,求表面积。
教师:要求圆柱的表面积,应该先求什么?·后求什么?
使学生明白:要先求圆柱侧面积和底面积,后求表面积。
教师:我们可以根据已知条件画出这个圆柱。随后教师出示圆柱模型,将数据标
在图上。
教师:现在我们把这个圆柱展开。出示展开图。
让学生观察展开图,“在这个图中,长方形 的长等于多少?宽等于多少:圆柱的
侧面积怎样计算?圆柱的底面积应该怎样求?”
指名学生回答,注意要使学生弄清每一步计算运用什么公式(如圆的周长公
式和面积公式,长方形的面积 公式,等等)。
然后指定一名学生在黑板上板演,其他学生在练习本上做。教师行间巡视,< br>注意察看学生计算结果的计量单位是否正确。
做完后,集体订正。
6、教学例3。
出示例3。教师:这道题已知什么?求什么?
学生:己知圆柱形水桶的高是24厘米,底面直径是20厘米。求做这个水桶要用
多少铁皮。
教师:这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,
会有哪几部分?
使学生明白:水桶没有盖,说明它只有一个底面。
教师:要计算做这个水桶需要多少铁皮,应该分哪几步?
指名学生回答后,指定两名学生板演 ,其他学生独立进行计算。教师行间巡
视,注意察看最后的得数是否计算正确。
做完 后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取舍的。
由此指出:这道题使用的材料要 比计算得到的结果多一些。因此,这里不能用四
. . .


.
舍五人法取近似值。这 道题要保留整百平方厘米,省略的十位上即使是4或比4
小,都要向前一位进1。这种取近似值的方法叫 做进一法。
7、小结。
在实际应用中计算圆柱形物体的表面积,要根据实 际情况计算各部分的面
积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,< br>油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保
证原材料够用。
四、巩固练习
1、做“做一做”的第1题。
教师:这道题已知什么?应该怎样求侧面积?
使学生明白可以直接用底面周长乘以高就可以得到侧面积。
让学生做在练习本上,做完后集体订正。
2、做一做的第2题。
让学生独立做在练习本上,教师行间巡视,做完后集体订正。
五、作业
1、完成第练习七的第2~~5题。
(1)第2、3题,是分别求圆柱的例面积和表面积,要求学生正确选用公式,
认真仔细地计算。
(2)第4题,圆柱形沼气池·的形状和特点要向学生说明(特别是城市里的小
学生) ,把它转化为数学问题,要弄清求的是圆柱哪些部分的面积。
(3)第5题,是先实际测量, 再计算的题目,可以分组进行测量和计算,每
组要量的茶叶筒的大小可以是不一样的。
2、让学有余力的学生做练习十的第6、7题。
第6·题.是已知圆柱的侧面积和底面半径,求圆柱的高。这样就要把求圆
柱的 侧面积的运算顺序颠倒过来。教师可以提示学生列方程解答。
第7题,是求一个没有盖的圆柱形铁皮水桶的用料:S=ΠR十2ΠH≈63.59
十 339.12=402.71≈410(平方分米)


. . .


.





3、圆柱的体积
教学容:教科书第36页的圆柱 体积公式的推导和例4,完成“做一做”的第1
题和练习八的第1—2题。
教学目的:通过用 切割拼合的方法借助长方体的体积公式推导出圆柱的体积公
式,使学生理解圆柱的体积公式的推导过程, 能够运用公式正确地计算
圆柱的体积。
教具准备:圆柱的体积公式演示教具(把圆柱底面平均 分成16个扇形,然后把它
分成两部分,两部分分别用不同颜色区别开)。
教学过程:
一、复习
1、圆柱的侧面积怎么求?
(圆柱的侧面积=底面周长×高。)
2、长方体的体积怎样计算?
学生可 能会答出“长方体的体积=长×宽×高”,教师继续引导学生想到长
方体和正方体体积的统一公式“底面 积×高”。
板书:长方体的体积=底面积×高
3、拿出一个圆柱形物体, 指名学生指出圆柱的底面、高、侧面、表面各是
什么?圆柱有几个底面?有多少条高?
二、导入新课
教师:请大家想一想,在学习圆的面积时,我们是怎样把因变成已学过的图
形再计算面积的?
先让学生回忆,同桌的相互说说。
然后指名学生说一说圆面积计算公式的推导过程:把圆等分 切割,拼成一个
近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方
. . .


.
形面积的
计算公式导出求圆面积的计算公式。
教师:怎样计算圆柱的体积呢?大家仔细想想看 ,能不能把圆柱转化成我们
已经学过的图形来求出它的体积?
让学生相互讨论,思考应怎样进行转化。
指名学生说说自己想到的方法,有的学生可能会说出将圆柱的底面分成扇形
切开,教师应该给予表扬。
教师:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它
的体积。
板书课题:圆校的体积
三、新课
1、圆柱体积计算公式的推导。
教师出示一个圆柱,提问:这是不是一个圆柱?(是。)
教师用手捂住圆柱的侧面,只把其中的一个底面出示给学生看提问:
“大家看,这是不是一圆?”(是。)
“这是一个圆,那么要求这个圆的面积,刚才我们已经 复习了,可以用什么方法
求出它的面积?”
学生很容易想到可以将圆转化成长方形来 求出圆的面积,于是教师可以先把
底面分成若干份相等的扇形(如分成16等份)。
然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到
大小相等的16块。
教师将这分成16块的底面出示给学生看,问:现在把底面切成了16份,应
该怎样把 它拼成一个长方形?
指名学生回答后,老师进行操作演示,先只把底面部分拿给学生看,。大 家
看,圆柱的底面被拼成了什么图形?”
学生:长方形。
教师:大家再看看整个圆柱,它又被拼成了什么形状?
(有点接近长方体:)
然后教师指出:由于我们分得不够细,所以看起来还不太像长方体;如果分
. . .


.
成的扇形越多,拼成的立体图形就越接近于长方体了。
教师:把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎
样求?
引导学生想到由于体积没有发生变化,所以可以通过求切拼后的长方体的体
积来求圆柱的体积。
教师:“而长方体的体积等于什么?”让全斑学生齐答,教师接着板书:“长
方体的体 积=底面积×高”。
教师:请大家观察教具,拼成的近似长方体的底面积与原来圆柱的哪一部 分
有关系?近似长方体的高与原来圆柱的哪一部分有关系?
通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就
是圆柱的高。
板书:圆柱的体积=底面积×高
教师:如果用V表示圆柱的体积,S表示圆柱的底面积,H表示圆柱的高,
可以得到圆柱的体积公式; V=SH
2、教学例4。
出示例4。
(1)教师指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?
通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计
量单位。
(2)出示下面几种解答方案,让学生判断哪个是正确的?
①V=SH=50×2.1=105
答:它的体积是105立方厘米。
②2.1米;210厘米
V=SH=50×210=10500
答:它的体积是10500立方厘米。
③50平方厘米=0,5平方米
. . .


.
V=SH=0.5×2,1=1.05
答:它的体积是1.05立方米。
④50平方厘米=0.005平方米
V=SH=0.005×2.1=0.0105立方米
答:它的体积是0.0105立方米。
先让学生思考,然后指名学生回答哪个 是正确的解答,并比较一下哪一种解
答更简单。对不正确的第①、②种解答要说说错在什么地方。
三、练习:
1、做“做一做”的第1题。
让学生独立做在练习本上,做完后集体订正。
2、完成练习八的1、2题
这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。要求学生
审题
后,知道底面直径的要先求出底面积,再求圆柱的体积。
3、扩展题








4、圆柱体积计算的应用
教学容:教科书第37页的例5,完成“做一做”的第2题和练习八的第3—7
题。
教学目的:使学生掌握圆柱体积的计算公式,并能运用公式解决一些简单的实
际问题。
教具准备:一个圆柱形物体,一个圆柱形杯子。
. . .


.
教学过程:
一、复习
1、口算。
出示练习八的第3题
4.5 十 0.37 0.25×8 4.8十 2.9
7.2÷9 6.1—4.8
-
2,复习圆柱的体积。
教师:我们是怎样得到圆柱体积的计算公式的?圆柱体积的计算公式是什么?
指名学生叙述一 下圆柱体积计算公式的推导过程,使学生明确求圆柱的体积
是通过切拼成长方体来求得的。圆柱体积的计 算公式是“底面积×高”,即:V
=SH.
二、新课
1、教学圆柱体积公式的另一种形式。
教师:请大家想一想,如果已知圆柱底面的半径r和高H,圆柱体积的计算
公式
应该怎样表达?
引导学生根据底面积S与半径r的关系可以知道:S=∏×R × R,所以圆
柱体积的计算公式也可以写成:V=∏×R×R×H。
2、教学例5。
出示例5。
(1)教师提出下面问题帮助学生理解题意:
①这道题已知什么?求什么?
②求水桶的容积是什么意思?根据什么公式?为什么?
要使学生理解水桶的容积就是水桶能容纳物体的体积,求水桶的容积就是
求这个圆柱形水桶部的体积。 所以可以根据圆柱体积的计算公式来计算。
⑧要求水桶的容积应该先求什么?
要使学生明确,水桶的底面积在题中没有直接给出,因此要先求水桶的底
面积,再求水桶的容积。
. . .


.
①水桶的底面积应该怎样求?
(2)让学生叙述解答过程,教师板书。
求出水捅容积之后,教师提问:最后结果应该怎样取值?
使学生明确要把计量单位改写成立方分米,取近似值时要采用去尾法。
(3)做一做的第2题。
让学生独立做在练习本上,做完后集体订正。
三、课堂练习
1、做练习八第4题。
这是一道实际测量、计算的题目,可 以分组进行测量和计算,每组的茶杯
可以是不一样的。教师可以先让学生讲一下自己的测量方法,再进行 测量和计
算。
学生测量时,教师行间巡视,注意察看学生测量的方法是否正确,对有困难
的学,生要及时给予指导。
做完后集体订正,要注意强调不能只计算出茶杯的体积,还要计算出可以
装多少克水 ,以及取近似数的方法。
2、做练习八的第5题。
读题后.教师可以先后提问:
“这道题要求的是什么?”
“题目只告诉了圆柱 形粮食囤的底面半径和高,要求这个粮囤能装稻谷多少
立方米,应该先求什么?怎样求?”
指名学生回答后,再让学生独立做在练习本上,教师巡视。
做完后集体订正,强调得数的取舍方法。
3、做练习八第6题。
教师:这道题已知什么?求什么?
指名学生回答后,再问:应该怎样求?
引导学生从圆柱的体积计算公式入手,可以直接用算术方法计算,也可以列
方程来解答。
4、做练习八的第7题。
读题后,教师可提出以下问题:
. . .


.
“这道题要求的是什么?”
“怎样利用已知条件求出这个油桶的容积?”
“ 题目中的条件和问题的单位不统一。应该怎样改写更简便?”分别指名学
生回答。要使学生明白,这里可 以先将40厘米和50厘米分别改写成4分米和5
分米计算更简便。
让学生独立做在 练习本上,教师行间巡视,注意察看学生对圆柱体积计算方
法是否掌握,计量单位是否按照题目的要求进 行改写,最后得数的取舍是否正确。
做完后集体订正,指名学生说说自己是怎样计算的。









5、圆锥的认识
教学容:教科书第41—42页的容,完成“做一做”和练习九的第l一2题。
教学目的:使学生认识圆锥,掌握圆锥的特征,会看圆锥的平面图。
教具准备:要求每个学生用教 科书图样做一个圆锥的模型,并让学生收集一些
圆锥形的实物,教师准备一个圆锥形物体,一块平板(或 玻璃),一把
直尺。
教学过程:
一、复习
1、提问:圆柱体积的计算公式是什么?
2、圆柱的特征是什么?
二、导入新课
教师:我们已经学习了圆柱的有关知识。请大家拿出自己准备好的跟老师
一样的物体 ,看一看,摸一摸,你们感觉它与圆柱有什么不一样?
. . .


.
三、新课
1、圆锥的认识。
让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自 己观察的结果。从
而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆,等等。
教师指出:像这样的物体就叫做圆锥体,简称圆锥。这节课我们就来学习这
种新的立体图形:
板书谋题:圆锥
教师:大家门才认识了圆锥形的物体,我们把这些物体画在投影片上。
出示有圆锥形物体的投影片。
教师:现在我们沿着这些圆锥形物体的轮廓画线,就可以得到这样的图形。
随后教师抽拉投影片,演示得到圆锥形物体的轮廓线。
然后指出:这样得到的图形就是圆锥体的几何图形。
教师指出:圆锥有一个顶点,它的底面是一个圆。
然后在图上标出顶点,底面及其圆心O。
同时还要指出:我们所学的圆锥是直圆锥的简称。
接着让学生用手摸一摸圆 锥周围的面,使学生发现圆锥有一个曲面。由此指
出:圆锥的这个曲面叫做侧面。(在图上标出侧面。)
让学生看着圆锥形物体,指出:从圆锥的顶点到底面圆心的距离叫做高。然
后在图上标出高。
教师顺着母线的方向演示。问:这条线是圆锥的高吗?
指名学生回答后,教师要指出:沿着曲面上的线都不是圆锥的高。
教师:圆锥的高到底有多少条呢?
引导学生根据高的定义,弄清楚由于圆锥只有一个顶点,所以圆锥只有一条
高。
然后 让学生拿出自己的学具,同桌的两名同学相互指出圆锥的底面、侧面和
顶点,注意提醒学生圆锥的高是不 能摸到的。
2、小结。
圆锥的特征(可以启发学生总结),强调底面和高 的特点,使学生弄清圆锥的
特征是底面是圆,侧面是一个曲面,有一个顶点和一条高。
. . .


.
3、测量圆锥的高。
教师:由于圆锥的高在它的部,我们不能直接量出它的长度,这就需要借助
—块平板来测量。
教师边演示边叙述测量过程:
(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;
(3)竖直地量出乎板和底面之间的距离。
测量的时候一定要注意:(1)圆锥的底面和平板都要水平地放置;(2)读数时
一定要读平板 下沿与直尺交会处的数值。
4、教学圆锥侧面的展开图。
教师:圆锥的侧面是哪一部分?
教师展示圆锥模型,指名学生说出侧面部分。
教师:我们已经学习过圆柱,哪位同学能说一说圆柱的侧面展开后是什么图
形?
学生 回答出圆柱的侧面展开图是长方形后,教师设问:那么,请大家想一想,
圆锥的侧面展开后会是什么图形 呢?”
留给学生短暂的思考讨论时间后,教师指出:下面我们通过实验来看看圆锥
的侧 面展开后是一个什么图形。
然后教师指导学生把圆锥模型的侧面展开,使学生看到圆锥的侧面 展开后是
一个扇形。展开后还可以再把它合拢,恢复原状,使学生加深对圆锥侧面的认识。
四、课堂练习
1做“做一做”的题目。
让学生拿出课前准备好的模型纸样. 先做成圆锥,然后让学生试着独立量出
它的底面直径。教师行间巡视,对有困难的学生及时辅导。
2、做练习九的第1题。
让学生自由地想,只要是接近于圆锥的都可以视为是圆锥。
3、做练习九的第2题。
这道题是培养学生拆分组合图形的能力,使学生能将一个组合图形拆成已经
学过的。
. . .


.
读题后,教师提问:






6、圆锥的体积
教学容:教科书第42~~43页的例1、例2,完成“做一做”和练习九的第3—5
题。 < br>教学目的:使学生初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥
的体积,发展学生 的空间观念。
教具准备:等底等高的圆柱和圆锥各一个,比圆柱体积多的沙土(最好让学生也
准备).
教学过程:
一、复习
1、圆锥有什么特征?
使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。
2、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。
二、导人新课
我们已经学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?
今天我 们就来学习圆锥体积的计算。
板书课题:圆锥的体积
三、新课
1、教学圆锥体积的计算公式。
教师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?
指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是
通过切拼成长方体来求得的。
教师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?
. . .


.
先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,
得到计算圆锥体积的公式。
教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么
共同的地方?”
然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实
验,看看它们之间的体积有什 么关系?”
接着,教师边演示边叙述:现在圆锥和圆柱里都是空的。我先在圆锥里装满沙土,然后倒入圆柱。请大家注意观察,看看能够倒几次正好把圆柱装满?
问:把圆柱装满一共倒了几次?
学生:3次。
教师:这说明了什么?
学生:这说明圆锥的体积是和它等底等高的圆柱的体积的 。

板书:圆锥的体积=13 × 圆柱体积
教师:圆柱的体积等于什么?
学生:等于“底面积×高”。
教师:那么,圆锥的体积可以怎样表示呢?
引导学生 想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得
到圆锥体积的计算公式。
板书:圆锥的体积= 13 ×底面积×高
教师:用字母应该怎样表示?
然后板书字母公式:V=13 SH
2、教学例1。
出示例1。
教师:这道题已知什么?求什么?
指名学生回答后,再问:已知圆锥的底面积和高应该怎样计算?
引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,
做完后集体订正。
3、做第50页“做一做”的第1题。
. . .


.
让学生独立做在练习本上,教师行间巡视。
做完后集体订正。
4、教学例2。
(1)出示例2。
教师:这道题已知什么?求什么?
学生:已知近似于圆锥形的麦堆的底面直径和高,以及每立方米小麦的重
量;求这堆小麦的重量。
教师:要求小麦的重量,必须先求出什么?
学生:必须先求出这堆小麦的体积。
教师:要求这堆小麦的体积又该怎么办?
学生:由于这堆小麦近似于圆锥形,所以可利用圆锥的体积公式来求。
教师:但是题目的条件中不知道圆锥的底面积,应该怎么办。?
学生:先算出麦堆的底面半径 ,再利用圆的面积公式算出麦堆的底面积,然
后根据圆锥的体积公式求出麦堆的体积。
教师:求得小麦的体积后.应该怎样求小麦的重量?
学生:用每立方米小麦的重量乘以小麦的体积就可以求得小麦的重量。
分析完后,指定两名学 生板演.其余学生将计算步骤写在教科书第50页上。
做完后集体订正,注意学生最后得数的取舍方法是 否正确。教师要说明小麦每立
方米的重量随着含水量的不同而不同,要经过量才能确定,735千克并不 是一个
固定的常数
(2)组织学生讨论,怎样测量小麦堆的底面直径和高?
讨论后.先让学生说出自己的想法.然后教师再介绍一下测量的方法:测量
底面直径时。可以用两根竹竿 平行地放在小麦堆两侧,测量出两根竹竿间的距离
就是底面直径:也可以用绳子在底部圆的周围围上一圈 量得小麦堆的周长,再算
出直径。测量小麦堆的高。可用两根竹竿.将一根竹竿过小麦堆的顶部水平放置 ,
另一根竹竿竖直与水平的竹竿成直角即可量得高。
5、做“做一做”的第2题。
教师:这道题应该先求什么?
学生:要先求圆锥的底面积。让学生做在练习本上,教师行间巡视。
. . .


.
做完后集体订正。
四、小结(略)
五、课堂练习
1、做练习九的第3题。
指定3名学生在黑板上板演,其余学生做在练习本上。
集体订正时.让学生说一说自己的计算方法。
2,做练习九的第4题。
教师可以让学生回答以下问题:
(1)这道题已知什么?求什么?
(2)求圆锥的体积必须知道什么?
(3)求出这堆煤的体积后,应该怎样计算这堆煤的重量?
然后让学生做在练习本上,教师巡视,做完后集体订正。
3、做练习九的第5题。
教师指名学生先后回答下面问题:
(1)圆柱的侧面积等于多少?
(2)圆柱的表面积的含义是什么?怎样计算?
(3)圆柱体积的计算公式是什么?
(4)圆锥的体积公式是什么?
然后,让学生把计算结果填写在教科书第51页的表格中。做完后集体订正。







7、圆锥体积的练习
教学容:教科书练习九的第6—9题。
教学目的:通过练习,使学生进一步熟悉圆锥的体积计算。
. . .


.
教学过程:
一、复习
1、圆锥的体积公式是什么?
2、填空。
二、课堂练习
1、做练习九的第6题。
教师出示一个圆锥形物体,让学生想一想怎样测量才能计算出它的体积:
让学生分组讨论一 下,然后各自让一名学生说说讨论的结果,最后归纳出
底面圆的周长,再求出底面的半径,进而求出底面 积,然后用书上介绍的方法,
用直尺和三角板
测量出圆锥的高,这样就可以求出圆锥的体积。
2、做练习九的第7题。
读题后,教师可以先后提问:
“这道题已知什么?求什么?
“要求这堆沙的重量,应该先求什么?怎样求?”
指名学生回答后,让学生做在练习本上,做完后集体订正。
3、做练习九的第8题。
读题后,教师可提出以下问题:
“这道题要求的是什么?”
“要求这段钢材重多少千克,应该先求什么?怎样求?”
“能直接利用题目中的数值进行计算吗?为什么?”
“题目中的单位不统一,应该怎样统一?”
分别指名学生回答后,要使学生明白这里要先将2米改写成200厘米,再利
用圆柱的 体积计算公式算出钢材的体积是多少立方厘米,然后再求出它的重量。
最后计算出的结果还应把克改写成 千克。
4、做练习九的第9题。
读题后,教师提问:这道题要求粮仓装小麦多少吨,应该先求什么?
要使学生明白,应该先求2.5米高的小麦的体积,而不是求粮仓的体积。
让学生独立做在练习本上,做完后集体订正。
. . .


.
三、选做题
让学有余力的学生做练习九的第10*、11*、12*题。
1.练习九的第10*题。
教师:这道题要求圆锥的体积.但是题目中没有告诉底面积,而只是已知底
面周长和高。请大家想一想,应该怎样求出底面积?
引导学生利用“C=2∏r”再利用“S∏R,就可以求得S=∏( )’。
再利用圆锥的体积公式就可以求出其体积。
2、练习九的第11*题。
这是一道有关圆柱、圆锥体积的比例应用题。
可以用列方程来解答。利用题目中圆锥和圆柱的体积之比,可以建立一个比
例式。
设圆柱的高为x厘米
(注意:由于圆锥和圆柱的底面积S都相等,所以计算中可以先把S约去。)
3.练习九的第12题。
这道题是拆分组合图形,引导学生仔细分析图形,不难看出它是由等 底的圆
柱和圆锥组合而成的:从图中可以看出,圆柱和圆锥的底面直径都是16厘米,
而圆柱的 高是4厘米,圆锥的高是17厘米。然后再根据圆的面积公式及圆柱和
圆锥的体积公式,就可以求出这个 组合图形的体积了。








整理和复习

教学要求:通过整理和复习,掌握圆柱和圆锥的特 点,求圆柱圆锥体积的计算公
式。能区别圆柱、圆锥,正确计算圆柱圆锥的体积,建立空间观念。
. . .


.
教学重点:使学生了解圆柱圆锥的特点,求圆柱圆锥的体积。
教学难点:形成表象,建立空间观念。
教学过程:
(一)整理
(1)圆柱 圆柱的特点 圆柱的各部分名称
圆柱表面积 圆柱的体积 V=Sh
(2)圆锥 圆锥的特点 圆锥的各部分名称
圆锥的体积 V=-13Sh
(二)随堂练习
1、第48页1-3圆柱容 填书。
练习十第1、2题,第3体求圆柱的体积。
2、第48页4-6题圆锥的容,填书。
练习十第3题求圆锥的体积。
板书设计:
整理和复习
特征
圆柱 各部分名称
表面积=两个底面积=侧面积
体积=V=Sh
特征
圆锥 各部分名称
体积V=13Sh




简单的统计(二)


. . .


.
(一) 教学要求
1.使学生进一步认识统计的意义和作用。
2.使学生学会制人选一些含有百分数的简单的统计表。
3.使学生初步认识条形统计图、折 线统计图和扇形统计图的特点和作用,并学
会制作一引起简单的统计图。
4.使学生会对统计图表进行一些简单的分析,受到国情教育。
(二) 教学指导
本单元的主要容包括:含有百分数的统计表,条形统计图的折线统计图的特点、
作用及制作的一般步骤。
1.教学统计表时,启发学生在原来的统计表中增加一栏容(百分数)就可以看
出统计表中有关 数量间的百分比关系。
2.教学统计图时,应比较详细地介绍制作的一般步骤,边讲解边制作。教学例
2时,应突出复式条形统计图与单式条形统计图的不同之处。
3.注意指导学生对统计图表进行一些简单的分析,提高学生观察分析能力。
(三)教案

1. 统计表

第一课时
课题:含有百分数的统计表
教学容:教材70~71页的容。
教学目标:
1.使学生能够掌握含有百分数复式 统计表的制作方法;会计算合计中的百分数;
进定步学会制复式统计表。
2.加深对百分数在统计中的作用的理解,能运用百分数说明一些简单的问题。
3.通过绘制和分析含有百分数的统计表,渗透国情教育。

教学过程:
1.以旧引新
说说制作复式统计表的步骤?
. . .


.
2.新授
(1)导入新授
我们已经掌握了复式统计表的制作方法,今天我们学习含有百分数的复式统计
表。
( 2)出示例1:下面是1990年至1992年东山村每年的总收入与村办企业收入
的统计表。如果要使 这个统计表表示出这三个年度中村办企业心入占全村
总收放的百分之几,应该怎样做?

东山村村办企业收入统计表 2001
年3月制












全村总收入 其中村办企业收藏
合计
1998年
1999年
2000年

750万
875万
1800万

420万
542.5万
1449万
引导学生观察并思考,然后回答:
1)每年全村总收入和其中村办企业收各是多少?
2)要使这个统计表表示出这个年度中村办 企业中村办企业占全村总收入的百分
之几,应该怎样做?(先讨论,再回答)
(3)教师说明 :只要在这个统计表中再增加一栏,依次填上每年村办企业收入
占体村总收入的百分数就可以了。教师边 讲边在原统计表在右边增加一栏,
就成为例1的第二个统计表了。(见教材页)
(4)要求学生自己完成第二个统计表,并提问:
1)1992年全村收入比1991年增加多少万元?
2)1992年村办企业收入比1991年增加多少万元?
3)1992年该村其他收入(包括粮食、副业等)比1991年增加多少万元?
. . .


.
4)1992年村办企业收入占全村总收入的百分之几?
(5)强调
1)计算百分数时,百分号前的数只需取一位小数。
2)合计这一行的百分数要用三年村办企业收入的合计数占三年总收入的百分
比。
(6)新授小结
在填写含有百分数的统计表时,先看清表中的要求,想好怎样计算问题的百分数,
然后再填。
3.巩固练习
完成教材52页“做一做”
4.全课总结
提问学生总结:通过这节课的学习,你学到了什么容?你都学会了哪些知识?
5.作
练习十一1—2题。



第二课时
统计表的练习

教学要求:
1.使学生进一步掌握含有百分数统计表的结构及能够准确熟练地进行数据计算
与表格填写。
2.进一步培养学生观察、分析的能力。
3.通过制统计表,培养学生认真、仔细的良好习惯。
教学过程:
1.讲述练习容
上节课我们学习了制作含有百分数的统计表,这节课我们进行巩固练习。
2.复习
让学生观察教材52页例1统计表提问:制一合格的统计表的步骤是什么?(要
求边看书边讨论,然后回 答)
. . .


.
制复式统计表的步骤:
(1)设计“表头”
(2)定纵横栏目各需几格
(3)画表
(4)填写数据(包括总计、合计)
(5)写上名称、制表日期
3.巩固练习
在学生掌握复式统计表制作方法的基础上,出示练习十七第3题。
方法:指导做题,让学生研究后再制表
(1)提问:“各年级”和“全年级”各表示什么意思?
(2)教师巡视指导,然后让学生结合题目说一说制表的步骤。
4.综合练习
(1)完成教材练习十一第5题。
方法:独立完成。然后让学生回答第二季度合计数填写的位置,全班齐练。
(2)完成教材练习十一第4题。
方法:要求学生认真审题,抓住关键词语,弄清数量关系, 正确列出算式,准确
计算。在做题时一定要注意差后,发现普通的问题要统一纠正。
5.深化练习
练习十一第6题,不要求所有的学生都能完成,教师提示引导,学生试做。 < br>教师引导,表中各班占总数的百分几中的总数指的是谁平均每人植树的棵数又是
什么意思?学生试 做后讲评。
6.全课总结
有关统计部分的知识在我们的生活中应用很广,因此这部分知识很重要, 同学
们一定要牢牢记住。
7.作业(补充)
(1)请把下面统计表填写完整


双林衬衫厂去年各季度生产情况统计表 1993年1月
项目 计划产量 实际产量 完成计划的百分数
. . .


.
件数
季度
合计
第一季度
第二季度
第三季度
第四季度

8000

1000



12000
12500
18200

125%
120%

140%
(2)填表。根据统计要求将下表填写完整
东方小学男、女生人数统计表
性别
人数
年级
总计
低年级
中年级
高年级
280
90
80



2. 统计图

第一课时

47




36
52
合计 男生 女生
各年级女生占男姓人
数的百分数




条形统计图

教学目标:
1.使学生了解条形统计图的意义和作 用,掌握制作条形统计图方法,能看懂和
制作单式条形统计图。
2.培养学生初步统计能力,向学生渗透辩证唯物主义观点。
教学过程:
1.复习
(1)
上节课我们学习了什么容?
. . .


.
我们已经学会制作简单的统计表,用统计表表示的数量,还可以用统计图来表示。
(板书:统计图)
(2)导入新授
(出示从报刊或图书搜集的一些学生易于理解的 条形统计图,折线统计图和扇形
统计图)告诉学生:常用的统计图有条形统计图、折线统计图和扇形统计 表三种。
这节课我们先来学习第一种—条形统计图。
(完成板书:条形统计图)
2.新授
(1)教学条形图统计图的意义及组成。
(2)思考:
(3)教学条形统计图的制作方法
1)出示例1
例1
年份
降水量(毫米)
1996年
920
某地1996~2000年的年降水量如下表
1997年
860
1998年
1005
1999年 2000年
670 704
根据表中数据,制成条形统计图。
2)单式条形统计图的制作方法。
自学:制条形统计图的一般步骤是什么?
教师示后,让学生完成这统计图,教师巡视指导。
1)归纳制作形统计图的一般步骤
2)哪一年的年降水量最多?是多少毫米?
3)哪一年的年降水量最少?是多少毫米?
4)最多年降水量大约是最水年降水量的几倍?
归纳条形统计图的特点。
比较统计表和统计图,想一想:条形统计图有什么特点?(特点:从 条形统计图
中很容易看出各种数量的多少)
(4)课堂练习
完成教材75页的“做一做”
注意:画出的直条要准确;直条顶上注明具体数量。
(5)小结:条形统计图的制作方法是什么?在制作时要注意什么问题?
. . .


.
(6)看书并质疑
3.巩固练习
完成教材练习十二第1、2题。
4.全课总结
这节课我们学习了哪些容?学会了哪些知识?



第二课时

条形统计图

教学目标:
1.使学生进一步掌握制作条形统计图的方法,并会制作复式条形统计图。
2.培养学生初步的统计能力,向学生渗透辩证唯物主义的事物间是普遍联系的
观点。
教学过程:
1.以旧引新
回答。
(1)统计图分为哪几种?什么是条形统计图
(2)制作条形统计图的步骤分为哪几步?
2.新授
(1)揭示课题:这节课继续学习“条形统计图”(板书课题)
(2)学习例2
1)出示例2



例2 下面是前进机床厂各车间男、女工人数统计表。
车间
人数
合计 第一车间 第二车间 第三车间
. . .


.
性别
总计
男工
女工
570
325
245
110
80
30
245
110
135
215
135
80
根据上表中的数据、制成条形统计图。
2)看书第57页,思考并讨论。
a. 例2是一个什么样的统计表?
b. 画这幅条形统计图时,需哪些地方与例1相同?哪些地方与例1不同?
c. 在把例2制成条形统计图时,需把三个车间的男工和女工的人数都分别表示
出来,需要怎么办?
3)回答思考题。
例2是一个复式统计表,
与例1相比二者相同点是:
二者不同点是:
4)依照课本第58页例2中,第一、第二车间的制图方法,完成第三车间的制图。
5)在制作复式条形统计图时,应注意什么?
6)观察例2的统计图回答下面的问题:
a. 男工人数最多的是哪个车间?最少的是哪个车间?
b. 女工人数最多的是哪个车间?最少是是哪个车间?
c. 在统计图怎样找出哪个车间的人数最多?哪个车间人数最少?
(3)小结:复式条形统计图的制作方法和注意的问题。
(4)看书并质疑
3.巩固练习
教材练习12 第5、6题。
4.全课总结
这节课我们学习了哪些知识?

第三课时
折线统计图
教学目标:
. . .


.
1.使学生了解折线统计图的意义和作用,掌握制作折线统计图的方法,能 看懂
和制作单式折线统计图。
2.培养学生初步的统计能力,向学生渗透辩证唯物主义观点。
教学过程:
1.复习旧知,导入新授 上节课我们学习了什么容?
我们已经学会 了制作条形统计图,常用的统计图还有折线统计图。(出示从报刊
或图书中搜集的一些学生易于理解的折 线统计图)这节课,我们就来学习折线统
计图。
(板书:折线统计图)
2.新授
(1)教学折线统计图的意义及组成
看教材62页
完成思考题。
1)幻灯出示折线统计图的意义。
2)第62页例3的折线统计图,指图说出它包含哪引起容。
(2)教学折线统计图的制作方法。
出示例3
例2
月份
平均气
温℃

2

5

某地1993年每月的月平均气温如下表
四 五
22

28
七 八 九
26

19
十一 十二
11.5 5 10 16.5 32 32.5
根据上表中的数据,制成折线统计图。
教学单式折线统计图的制作方法。
1)引导学生思考:
a. 一年有十二个月,在水平射线上应如何划分?
b. 这一年最高的月平均气温是32.5℃,在垂直射线上应如何划分?
2)说明:在画折线时,先要按照数据大小描出各点,再用线段顺次连接起来。
3)指导学生到讲台前来画一画,描出各点,再顺次连接两点之间成直线,在各
点注上数字
最后写好统计图标题、标明制图日期。
. . .


.
4)教师示后,让学生完成这统计图,教师巡视指导。
5)比较折线统计图的步骤与制条形统计图有什么异同点?
(制折线统计图的步骤与制条形统 计图基本相同,只是不画直条,而是按照数据
大小描出各点,再用线段顺序连接起来)
(3)教学折线统计图的特点
看例3的折线统计图回答问题:
1)哪个月的平均气温最高?哪个月的平均气温最低?
2)哪两个月之间的平均气温上升得取快?哪两个月之间的平均气温下降得最
快?
归纳折线统计图的的特点。
(4)比较条形统计图的折线统计图,想一想:折线统计图有什么特点?
(5)课堂练习
完成教材63页“做一做”。
(6)小结:折线统计图抽制作方法是什么?要注意什么问题?
(7)看书并质疑
3.巩固练习
完成教材练习十九第1、2题。
4.全课总结
这节课我们学习了哪些知识?








第四课时

折线统计图
. . .


.
教学目标:
1.使学生了解复式折线统计图的特点和用途,掌握绘制复式折线统计图的方法,
会绘制复式折线统计图。
2.培养学生初步统计能力,向学生渗透辩证唯物主义观点。
教学过程:
1.复习
回答
(1)什么是折线统计图
(2)制作折线统计图分为哪几步?
2.新授
(1)揭示课题
这节课我们将继续学习“折线统计图”。(板书课题)
(2)学习例4
出示例4
例4 某市无线电一厂、二厂1985年~1983年的产值增长情况如下表。

年份
产值(万元)
厂名
无线电一厂
无线电二厂
4000
4000
6000
4500
9500
5500
12000
6500
18000
9100
1985年 1988年 1990年 1992年 1993年
根据上表中的数据,制成折线统计图。
看书第64页,思考并讨论:
1)回答思考题:
1)例4是一个复式统计表
2)例4表中表示的统计数据的年份是不连续的。
在制统计图时,需要根据实际年份的多少在 水平射线上划分出表示年份的间隔,
使得表示两年的间隔是表示一年间隔的2倍,表示三年的间隔是表示 一年间隔的
3倍。这样能真实地比较出产值增长变化的情况。
3)可以把它们绘制在一图上
. . .


.
先用折线统计图描点的方法,描出各点后,再肜两种不同的颜色或不同的线 段把
它们区别出来,并在制表日期下注明图例,说明每种线段表示的是什么即可。
仿照教材65页例4中无线电一厂的制图方法,完成无线电二厂的制图。
在制作复式折线统计图时,应注意什么?
(在描出各点后,要用两种不同的颜色或不同的线段 把它们区别开来;应在制表
日期下注明图例)
观察例4的统计图,回答下面的问题
1)哪个厂的工业产值增长得快?
2)哪一年的工业产值增长得最快?
3)比较例4与例3有什么不同?
(3)小结:讲述复式折线统计图的制作方法和应注意的问题。
(4)看书并质疑
3.巩固练习1
(1)完成教材65页的“做一做”
(2)完成教材练习十三第5题。
4.全课总结
这节课我们学习了哪些知识?





第五课时
扇形统计图
. . .


.
教学目标:
1. 使学生了解扇形统计图的特点,掌握制扇区形统计图的一般步骤,并能正确
制作扇形统计图。
2. 培养学生的观察、分析、概括能力。
3. 渗透“实践第一”观点。
教学过程:
1.以旧引新
(1)回答。
圆周角的度数是什么?条形统计图的特点有哪些?折线统计图的特点有哪些?
(2)板画
两一个半径为30厘米的图形。
2.新授
(1)导言:前几节课我们一同学习了长 形统计图的折线统计图,掌握了这两种
统计图的特点和画法,这节课我们来学习一种新的统计图。(板书 :扇区形
统计图
(2)出示准备题,思考
1)扇形统计图是用什么图形来表示的? 结合准备题想一想这个整圆表示的是什
么?(全班学生的人数)
2)通过这个扇形统计田径反 映了这个班的学生在活动课中参加了几种小组活
动?它们分别占全班人数的百分之几?用什么图形来表示 ?
3)观察图中这个班级的学生参加小组人数最多的是哪个组?最少的是哪个组?
. . .


.
4)你能 够说出扇区形统计图有什么特点吗?(师生共同总结出扇区形统计图的
特点,并出示事先写好的小黑板, 并找一名学生读)
5)请你用量角器量一量书上图中每个扇形对应的圆心角各是多少度?量完以后算一算每个圆心角的度数占整个圆周角的百分之几?你又看到了什么?(这
个百分数与统计图中的百 分数相同)
阶段小结:要想知道每扇形的面积有多大,占整个圆面积的百分之几,只要知道
这 个扇形的圆心角的度数占整个圆周角的百分之几就可以了,因此在制作扇形统
计图时首先要知道部分数量 占总数量的百分之几,然后再根据这些百分数算出每
个扇形的圆心角度数,就可以画出各个扇形了。
(3)讲解例5
出示例5并思考
1) 找学生读题,想一想制作扇形统计图,第一 步先算什么?怎样列式?(边讲
解边板书:84+24+12=120(公顷),粮食作物:84120 =0.7=70%;棉
花:24120=0.2=20%;油料作物:12120=0.1=10%.每 步追问,并核对三个百分
数相加是否是100%)
2) 第二步再算什么?(板书并核对三个度数相加是否是360°)
3) 第三步怎样做?(板画图中根据圆心角度数顺次画出三个不同的扇形)
4) 最后一步怎样做?(标明 相应的名称和百分数,把各个扇形用不同的线纹或
颜色区别开来,并提醒学生写上统计图的名称和制作日 期)
5) 师生共同总结一下制作扇形统计图的步骤
6) 阶段练习:完成教材70页中的“做一做”。(都是巡视,个别指导,找学生
板画)
小结:这节课我们学习了什么知识?扇形统计图有什么特点?它的制作步骤是什
么?
. . .


.
3.巩固练习
(1)完成教材70页练习十四中的第一题
(2)完成教材70页练 习十四中的第二题(直接画在书中,并追问图形中不小格
相对应的圆心角的度数是多少?你是臬算的?)
(3)完成教材70页练习十四中第三、四题。
4.全课小结(略)

第六课时
练习课

教学目标:
1.使学生掌握条形统计图表,折 线统计图表及扇形统计图的特点及制作步骤,
进一步明确各种统计图表的适用围。
2.进一步培养学生的分析、概括能力
3.渗透“实践第一”的观点
教学过程:
1.讲述练习
上几节课,我们一同学习了统计图表,通过这节课的练习,要求大家掌握各种统
计图表的特点和制作步骤,进一步明确各种统计图表的适用围,并能正确制作它
们。
2.复习提问
(1)统计图表有几种?绘制统计图表前必须先做哪些工作?(搜集资料、整理
. . .


.
数据)
(2)统计图表的纵栏目和横栏目怎样确定?怎样画才能做到美观大方?
(3)制作统计图表一般分哪几个步骤?应注意些什么?
(4)统计图有哪几种?积肥什么特点和作用?
(5)统计图纵轴一个单位长度表示一定的数量,如何确定单位长度?绘制轴时
应注意些什么?
(6)制作统计图一般分几个步骤?
学生回答问题时,教师经过整理,总结归纳如下:
意义:把搜集的资料经过整理,填在一定格式表格,
用来反映情况、说明问题。
种类: 单式统计表
统计表 复式统计表

统计图 意义:把统计资料中的数量关系用图形表达出来
之形象具体,给人印象深刻。
条形统计图 容易看出图中数量的多少
折线统计图 清楚地表示出数量增减变化的情况
扇形统计图 清楚地表示出各部分同总数之间的关系。
练习:
完成教材71页练习十四的第6题。
让学生自己动手先绘制统计表,再绘制成折线统 计图。教师巡回指导,发现问题
及时指出纠正。强调栏目的分项及统计图的纵轴比例尺的画法。
总结各种统计图应用的不同围。
. . .


.
全课小结(略)



四、整理和复习
教学要求
通过总复习,使学生进一步理解掌握小学阶段学过的数和 数的运算、代数初
步知识、应用题、量的计算、几何初步知识、简单统计等知识。
使学过的知 识条理化、系统化、形成比较完整的知识结构,进一步提高学生的计
算能力、解答应用题的能力和综合运 用知识解决实际问题的能力。
结合复习容,向学生进行“事物之间是互相联系的”,“每一事物都有其 规律性”
等观点的教育,培养学生严格认真的学习态度。
教学指导
本单元容是本册 教材的重点,也是小学阶段数学知识的重要组成部分,它对
于学生系统完整地掌握小学阶段数学基础知识 和基本技能,对于掌握这一阶段所
学知识之间的联系及知识规律,对于全面复习和巩固知识等都有着重要 的意义。
为此,在组织学生复习时,应注意以下几个方面。
使学过的知识条理化、系统化。为 了便于教师引导学生进行系统地整理和复
习,本单元在容编排上,把小学所学过的数学知识划分为六个部 分。第一部分是
数和数的运算;第二部分是代数初步知识;第三部分是应用题;第四部分是量与
计量;第五部分是几何初步知识;第六部分是简单的统计。在复习各部分知识时,
应让学生把以前不同年 段学过的同类知识,通过疏理形成一定的条理,能系统地
掌握知识。如在数和数和运算中,应使学生明确 已经学过的数有:自然数、整数、
分数、小数。这里主要包括各种数和意义、性质、数的读法、写法、有 关数的运
算等知识。又如在复习应用题时,教材中主要根据解答应用题步骤和方法把应用
题分为 四个类型,即简单应用题、复合应用题、列方程解应用题,用比例知识解
应用题。为人便于学生撑,复习 中还可以列出图表,更清楚地列出各类不同的知
识。这样既有利于学生回顾知识,形成系统,又有利于理 解掌握,同时为沟通各
部分知识之间的联系奠定了基础。
. . .


.
在加强基 础和知识复习的过程中,注重沟通各部分知识之间的联系,使学生掌握
知识规律。在复习各部分知识时, 应使学生在进一步理解基础知识的基础上,熟
练地掌握。应注重让学生理解各部分知识之间的联系和区别 ,如整数、分数、小
数的意义与数的读、写之间,与数的四则计算之间的关系。数的意义是基础,数的读写及四则计算是数的意义的运用过程,在运用的过程中,也是对其意义进一
步理解的过程。又如 ,用算术与用列方程解答应用题之间的联系与区别,正比例
的反比例概念之间的联系和区别,简单应用题 与复合应用题之间的联系与区别,
以各种应用题之间的联系与区别等。中掌握知识规律,培养学生的能力 。
查漏补缺,因材施教,提高复习效益。
复习前,应全面调查了解每个学生对各部分知识掌 握情况,制定相应的复习
计划,有针、对性地进行复习的指导。要树立面向全体学生的思想,精心组织复
习容和方法,使各个层次的学生都有收获,都有提高,都得到发展。


第一课时


数和数和运算

教学容:数的意义、数的读法和写法(教材91-94页,96页的1-2题)
教学要求:
使学生进一步理解自然数、整数、分数、小数等有关概念,理解掌握它们之
间的关系,能运用这 些概念来解决有关的问题。
理解掌握整数、分数、小数的读写方法,能正确熟练地读写这些数。
教学过程:

从今天开始,我们学习第四单元---(整理和复习)。本单元容不仅 是本册教
材的一个重点,也是小学阶段数学知识的重要组成部分,这部分容是对小学阶段
数学知 识的总结和概括,同时又是中学数学知识的重要基础。为此,必须认真地
. . .


.
学好本单 元,要积极主动地搞好整理和复习,使学过的知识条理化、系统化、形
成比较完整的知识结构。
复习数的意义
举例说说,小学阶段学习了哪些数?
教师板书:自然数、整数、分数、小数。
理解整数、自然数、0之间的关系。
自然数:用来表示物体个数的0、1、2、3……。
整数 自然数 0:一个物体也没有,用0表示
比0小的数(以后学习的容)
练习73页“做一做”。
理解小数与分数之间的关系。
提出问题:
小数与分数之间有什么联系?
小数分几种情况,划分的根据是什么?当学生总结后,可归纳如下:
有限小数:小数部分的位数是有限的。
小数 无限小数(循环小数):小数部分的位数是无限的。
整数和小数位顺序表,理解整数与小数之间的联系。
让学生填写教材74页整数和小数数位顺序表。
请学生观察数位顺序表,回答问题:
什么叫数位?
整数与小数之间有什么联系?
练习教材75页上的“做一做”。
理解百分数的意义及有关术语。
举例说说什么叫百分数。
练习教材75页下的“做一做”
3.复习数的读法和写法
请同学们总结整数的写法。
请同学们想一想:小数和分数应怎样读?怎样写?
练习教材76页上的“做一做”
. . .


.
巩固练习
做78页练习十五中第1题、第2题中的(1)
全课小结
第二课时

数的改写 数的大小比较

教学要求:
使学生进一步理解数的改写方法,能正确熟练地把一个较大的多位数改写以“万”
或“亿”作单位的数和求近似数;能正确熟练地进行分数改写以及分数、小数、
百分数之间的互 化。
进一步理解整数、小数、分数比较大小的方法,能正确熟练地进行这些数的大小
比较。
教学过程:
1.讲述复习容,提出目标要求
2.复习数的改写
(1)读出下列各数:235800 345000 345000000
当学生读出来以后,让学生思考:
如何将这两个数分别改写成以万、亿作单位的数?
如何求一个整数近似数?
把一个数改写成以万或亿作单位的数与求一个整数的近似数人什么联系和区
别?
235800=23.58万 345000000=3.45亿
235800≈24 345000000≈3亿
应使学生明确 ,把一个数改写成以万、亿或其它单位的数,得到的是准确值
时,用等号联接两个数,而求近似数,得到 的是近似值,用约等号联接两个数。
(2)复习求小数近似数的方法,并比较与求整数近似数人何相同点?
让学生讲清求小数近似数的方法,然后,找出二者相同点:
一般都是用四舍五入法。
“舍”或“入”都是由规定位数的下一位数值决定的。
. . .


.
完成教材76页下的“做一做”
复习分数之间的改写和分数、小数、百分数之间的互化。
先让学生举例说说分数有哪几种,然后做练习,
2)
分数
120


小数

0.75

百分数


45%
举例说说怎样判断一个分数能不能化成有限小数?
复习数的大小比较
练习教材77页的“做一做”
巩固练习
教材78页第2题中(2)题、79页3题、4题。
教材79页5题、6题。

第三课时

数的整除;分数、小数的基本性质。
教学要求:
使 学生进一步理解整除、约数、倍数、公约数、公倍数、最大公约数、最小公倍
数、质数、合数、互质数、 质因数、分解质因数、能被2、3、5整除数的特征等
概念,并进一步理解它们之间的联系与区别。
进一步理解分数、小数、的基本性质;小数点移动引起小数大小变化的规律。
教学过程: < br>今天我们复习有关数的整除的知识和分数、小数的基本性质。这部分知识的要领
较多,它又是有关 运算和解决这些概念,掌握有关概念的联系。
复习数和整除
由“整除”这个基本概念引出有关概念。
举例说说什么叫整除,什么叫约数和倍数。
. . .


.
如24÷6=4 36÷12=3
24能被6整除 36能被12整除
思考:3÷2=1.5 6÷1.5=4这两个式是否表示整除关系?为什么?
总结整除的概念:
应注意两点:1)被除数和除数(不等于0)必须是整数:
2)商也是整数且没有余数。
进一步理解质数、合数、互质数、质因数、分解质因数的概念,以及它们之间的
关系。
(把24、36分解质因数,通过分解来进一步理解上述概念)
举例说说能被2、3、5整除数的特征,以及偶数与奇数。
通过上述分析过程,逐步形成下列板书:











教材81页上的“做一做”
复习分数、小数的基本性质
在括号里填上合适的数,并说出根据。
12=()4=6()=()20 618=()6=3()=1()
在()里填“>”“<”或“=”
12.05()12.050 1.402()1.420 0.03()0.0300 0.08()0.8
举例说说小数点移动位置后,小数大小会发生什么变化?
. . .


.
完成81页下的“做一做”
巩固练习
完成教材练习十六中第1、2题。
写出能同时被2、3、5整除的最小两位数。
完成教材练十六中第3、4、5、6题。

练习十六第7~12题。



第四课时

四则运算的意义和法则
教学要求:通过要求,使学生进一步理解四则运算的意义、四则运算的 法则,进
一步理解它们的联系,能正确、熟练地进行四则计算。
教学过程:
本节课 我们复习四则运算的意义和法则,通过复习要进一步理解四则运算的意义
和法则,理解它们之间的联系, 能正确、熟练地进行四则计算。
复习四则运算的意义
我们在小学阶段学过了哪几种运算?举例说说它们的意义各是什么?
进一步理解整数、小数、分数四则运算的意义及它们之间的联系和区别。
复习四则运算法则
先计算下列各题,再思考回答问题
整数、小数和分数的加法和减法的计算法则有什么共同点?
小数乘法和除法的计算法则与整数乘法和除法有什么相似的地方?有什么不
同?
说一说分数乘法和除法的计算法则。
完成教材85页中的计算题。(要结合运算法则和学生的实际情况,指出应注意什
么)
. . .


.
指导口算,说出口算过程。完成教材85页下边的题目。
完成练习86中第1、2、题。
进一步掌握四则运算中的特殊情况。
完成教材86 页上边的练习。(应使学生明确a代表一个数,当学生做完后,能用
语言叙述式子。如a+0=a,一个 数加上零还等于这个数)
进一步理解四则运算关系
完成教材87页中间的等式。并说说怎样运用这些关系对加、减、乘、除法的计
算题进行验算。
完成教材87页中的“做一做”
巩固练习
完成练习十七3~6题。

第五课时

运算定律与简便算法、四则混合运算。
教学要求:
通过复习,使学生进一步理解小学阶段所学习的运算定律,能应用其进行合理灵
活的计算。
进一步理解四则混合运算顺序,能正确、熟练地进行计算。
教学过程:
复习运算定律与简便算法。
请同学们回忆一下,小学阶段学过了哪些运算定律?
请同学们把教材87页上边的表填完整。
学习例1
观察例1这个算式的各个数什么特点,能用什么运算定律进行简算。
学生独立解答例1,并说明如何运用计算定律的。
小结:结合本班学生的实际情况提出应注意的问题。
试做87页的“做一做”。
复习四则混合运算
. . .


.
说明第一级运算和第二级运算的概念。
请同学们说说四则混合运算的顺序。

请学生独立完成例2
小结:在进行 四则混合运算式题中,应做到:一看,算式中含有哪些运算?有哪
些数?二想,这些运算和数字有何特点 ,是否可以简算?三算,动笔计算。四检
验,检查各计算是否正确。
巩固练习
完成教材90页第7题。学生做完后,可以互相交流一下简算的方法。
选择正确的答案序号填在括号里。
47+4÷47+4计算结果是() A 1 B 11 47 C 12
8×( 6+ 14)=8×6+8×14=48+2=50的计算依据是()
A 乘法结合律 B 乘法交换律 C 乘法分配律
完成教材90页第8题。练习中,先让学生判断 正确还是错误的,然后分析错误
的原固,最后再改正过来。
完成教材90页第9、10题。

第六课时
四则运处的意义和法则
教学要求:
使学生进一步理解四则运算的意义、定律、法则。
能正确地、合理灵活地进行四则计算和四则混合计算,
教学过程:
练习
选择正确答案的题号填在括号里。
计算(5 815+7.8-3.5÷715)×57时()比较简便。
把分数化成小数
把小数化成分数.
学生在完成选择题后,分别总结四则混合运算顺序和在分数、小数混合运算中把
. . .


.
分化成小数还是把小数化成分数计算简便,总结其规律。
试做教材91中第11题、第12题。
口算练习,提高学生口算能力。
12+13 1.5+12 34÷34 8 47×0 25.4÷1
2+3 34
脱式计算。
完成教材91页第13题。学生计算后,要说说估算的方 法,通过估算和计算,对
其结果进行比较。
引导学生分析、解答91页第14题、15题和思 考题。(鼓励学生积极思考,展示
自己思维过程)
全课小结

代数初步知识


用字母表示数与简易方程

教学目标:
使学生进一步理解用字母表示数的优越性;熟练掌握用字母表示公式、计算法则< br>和常见的数量关系等。
进一步认识理解并区别方程的意义、方程的解和解方程等概念;熟练正确 地用方
程解答有关的文字题,促进学生的智力发展。
教学过程:
我们已经学过代数的初步知识,这节课我们来进行复习,首先学习用字母表示数
和简易方程
基本复习
用字母表示数
自学教材92页第一自然段,说说用字母表示数有什么意义或者优点。
用字母表示下面的公式。
. . .


.
路程(S) 时间(t) 速度(v) S=( )
正方形面积(S) 边长(a) S=( )
规书写
问题:在一个含有字母的式子里,数字与 字母,字母与字母相乘时,怎样正确规
地书写呢?(教师读,学生在练习本上书写)
a乘以4.5写作( );S乘以h写作( )
反馈:
“a乘以4.5”可写成:a×4.5、a.4.5或4.5a,但不能写成 “a4.5”。(然后再
让学生把书中相应的空填上。提示学生最简便的表示法,如:“4.5a”)。
法则回顾:谁能说说同分母分数相加的计算法则?
如果用a、b、c表示三个自然数,那么此 法则可写成:ac+bc=()+()()
(让学生填空)
完成教材92页的“做一做”
简易方程
有关概念的复习
什么叫方程?(举例说)
“方程的解”与“解方程”有什么区别?
(让学生的实际例子中进一步理清概念间的联系与区 别。如:方程4x=36解得
x=9。X=9说是方程4x=36的解---使方程左右两边相等的未知 数的值,它是一个
数值。而解方程是指求方程的解的过程,它是一个演算过程)
应用加、减、乘、除法中各部分间的关系解方程。
口述解方程的依据?
例:9+x=12(根据一个加数等于和减去另一个加数,得:
(以下略)
x-18=38 2.5x=10 46÷x=2 x÷15=4
完成教材93页的“做一做”
教材例题(先让学生试做并口头检验,然后完成书中“想一想”的容)
小结:(根据本班级学 生学,列出方程后,在解法上注意与前面的简单方程作比
较;设所求数为x,让x当成已知数参加运算, 是便于思考的原因。)
x=12+9,所以x=3)
. . .


.
完成教材93页“做一做”
练习巩固
用线把两个相关的式子或语言连起来。
判断题
a+a=a
2
() a
3
=a+a+a () a+a=a2
完成教材十八页第1~2题。
全课总结(略)
作业
练习十八第3~4题。

第二课时
比和比例

教学目标:
使学生进上步理解和掌握比和比例的意义与性质。
区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基
础。
教学过程:
讲述本课复习课题并板书
基本概念的复习
比和比例的意义与性质。
什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例 中各部分的
名称),比的后项为什么不能是0?
比和分数、除法有什么联系?
说说比的基本性质的比例的基本性质?
比的基本性质与比例的基本性质各有什么用处?
看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?
完成教材95的“做一做”。
结合第3题让学生说说什么叫做解比例?根据是什么?
. . .


.
示比值和化简比。
独立完成教材96页上的题目。
说说求比值与化简比的区别?
(求比值是根据比的意义。用前项除以后项,得到 结果是一个 数;化简比是根
据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),
得到的结果是一个最简整数比)。
看书中的表,总结方法。
完成教材96页的“做一做”
比例尺
问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的
关系。
2)一幢教学大楼平面图的比例尺是1100,这比例尺表示的是什么意思?
比例尺除写成数字化形式处,还可怎样表示?
完成教材97页上的“做一做”。(理解比例尺 实质上是一个比,此比的前项与后
项表示的意义是什么。)
练习巩固
填空。(回答)
计算
完成教材十九页第1~4题。
全课总结(略)
第三课时
正比例和反比例
教学要求:
使学生进一步理解和掌握正、反比 例中每个概念的含义;更熟练地判断两种相关
联的量是不是成比例的量。如果成比例,成什么比例。
进一步提高解决简单实际问题的能力。
教学过程:
提出本课复习题
基本概念的复习
. . .


.
什么叫两种相关联的量?
下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例?
什么样的两种量成正比例关系?什么样的两种量成反比例关系?
成正比例关系的量与成反比例关系的量有什么异同点?
应用练习
完成教材97页的“做一做”。
第3题在完成时可先把题中的等式变一变形,像y=8x变成 yx=8;把y=8y变
成xy=8,这样判断起来就方便了。
巩固练习
完成教材99页第6~7题。
全课总结(略)


应用题
第一课时
简单应用题
教学目标:
通过简单应用题的复习,使学生进一步 明确分析数量关系的具体做法,培养学生
有条理的思维程序。
通过一题多问的形式培养学生求异思维能力和运用常见的数量关系解决简单的
实际问题的能力。
教学过程:
基本复习
回答。
提问:以上各题都是用几步解答的? 教师概括:用一步解答的应用题是小学数学中最基本的应用题或者说是简单应
题,它是解答各种应用 题的基础,我们首先应学好它。
揭示课题
看书自学101页第二自然段并思考:解答简单应用题时先做什么?然后做什么?
. . .


.
最后做什么?
回答思考题
师:我们这节课就要进一步复习与束理简单应用题。(教师板书课题)
学习例题
独立解答例1后,在书上完成编题要求。
归纳小结:从以上解答中可以看出,根据题中的已知 条件,除可以求出它们的和
或者差是多少之处,还可以求出什么?
调换条件与问题练习 师:通过例1,我们已经研究了用加、减、乘、除法解答一些简单应用题的数量
关系,现在我们再来 复习一些常见的数量关系。
常见数量关系的复习整理。
举例说明教材102页表中各组数量的意义,再把数量关系式填入表中。
根据表中的数量关系式,各编出三道不同的应用题。
进一步理解简单应用题是由两个已知条件与一个问题构成的。
学习例2
根据教材书中右面的算式补充条件,编成不同的简单应用题。
巩固练习
根据已知条件,分别提出用一个减法,二个除法解答的不同问题,并列出算式。
小红读一本书,第一天看了20页,第二天看了50页。
问题: 算式:
用减法
用除法
用除法
完成练习二十第1~2题。
完成练习二十第3题(只列式)
全课总结
第二课时
复合应用题
教学目标:
. . .


.
使学生进一步理解复合应用题的结构,掌握分析复合应用题的数量关系的方法。
通过不同的分析思路进一步提高学生解答应用题的能力。
教学过程:
揭示复习的容
师:上节课我们复习了简单应用题,也就是用一步解答的应用题。那么用两步或
者两步以上解答 的应用题我们叫它复合应用题。谁能说说什么叫复合应用题。(板
书课题)
讲授复习容
回顾解答步骤
读懂题意,找出已知条件和所求问题。
借助线段图等分析数量关系, 分析已知条件和已知条件的关系、已知条件和所求
问题的关系,明确先算什么,再算什么?最后算什么?
列式解答并写出答案
检验
自学教材103页例2。比较三道题有怎样的联系和区别?(从以下方面比较)
前两小题比较 :第一小题直接告诉“原计划每小时走3.75千米”,而在第二小
题变为间接条件---“原计划3小 时走完11.25千米”这就是用两步计算的原因。
第二、三题在第三小题变为间接条件—“实际2. 5小时走完原路程”。这就是用
三步计算的原因。
运用分析、综合等方法分析数量关系。在此基础上归纳例2的解题关键。
关键:都要先求出原 计划每小时走多少千米和实际每小时多少千米。从而看出复
合应用题是由两个和两个以上简单应用题组成 的。
巩固练习
学校买来4袋水泥,每袋50千克,用去150千克,还剩下多少千克?(用 综合
法和分析法并列综合算式)
完成教材练习二十第7题。

第二课时

. . .

有关汉字的歇后语-南阳人事


爱的教育读后感500-海南洋浦经济开发区


英语日记大全-写给老师的话


我是党员我带头-说说我自己


生活祛斑小妙招-以亲情为话题的作文


云大附中-做汤圆作文


表达效果-2019年党员评议自我鉴定


中国共产党预备党员考察表-农业谚语大全