高年级初中中学数学专题行程问题

巡山小妖精
679次浏览
2020年10月17日 17:59
最佳经验
本文由作者推荐

雷锋事迹简介-最新合同法全文

2020年10月17日发(作者:骆骧子)


初中(行程问题)专题
行程问题是指与路程、速度、时间这三个量有关的问题。我们常用的基本公式是:
路程=速度×时间;速度=路程÷时间;时间=路程÷速度.
行程问题是个非常庞大的类型, 多年来在考试中屡用不爽,所占比例居高不下。原因
就是行程问题可以融入多种练习,熟悉了行程问题的 学生,在多种类型的习题面前都会显
得得心应手。下面我们将行程问题归归类,由易到难,逐步剖析。
1. 单人单程:
例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度 从
80kmh
提高到
100kmh
,运行时间缩短了
3h
。 甲,乙两城市间的路程是多少?
【分析】如果设甲,乙两城市间的路程为
x
km,那么列车在两城市间提速前的运行
xx
时间为
h
,提速后的运行时间为
h
.
80100
【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间.
xx
【列出方程】
3
.
80100
例2:某铁路桥 长1000
m
,现有一列火车从桥上通过,测得该火车从开始上桥到
完全过桥共用了1
min
,整列火车完全在桥上的时间共
40s
。求火车的速度和长度。 【分析】如果设火车的速度为
x
ms
,火车的长度为
y
m
,用线段表示大桥和火车
的长度,根据题意可画出如下示意图:

1000
60x
1000
y 40x
【等量关系式】火车
1min
行驶的路程=桥长+火车长;
火车
40s
行驶的路程=桥长-火车长
y

60x1000y
【列出方程组】


40x1000y

举一反三:
1.小明家和学校相距
15km
。小明从家出发到学校,小明先步行到公共汽车站,步
行的速度为60
mm in
,再乘公共汽车到学校,发现比步行的时间缩短了
20min
,已知
公共 汽车的速度为
40kmh
,求小明从家到学校用了多长时间。
2.根据我省“十二五 ”铁路规划,连云港至徐州客运专线项目建成后,连云港至
徐州的最短客运时间由现在的2小时18分钟 缩短为36分钟,其速度每小时将提高
260km
.求提速后的火车速度。(精确到
1 kmh

3.徐州至上海的铁路里程为
650km
,从徐州乘”C “字头 列车A,”D”字头列车B都
可直达上海,已知A车的速度为B车的2倍,且行驶的时间比B车少
2.5h
.求A车的
速度及行驶时间。(同学们可能会认为这是双人行程问题,其实这题的类 型可归结于例
1的类型,把B车的速度看成是A提速后的速度,是不是也可看成单人单程的问题呀!)


4.一列匀速前进的火车用15秒的时间通过了一个长300米的隧道(即从车头进入< br>隧道到车尾离开隧道)。又知其间在隧道顶部的一盏固定的灯发出的一束光垂直照射火
车秒,(光 速
310
8
ms

1)求这列火车的长度
2)如果这列火车用25秒的时间通过了另一个隧道,求这个隧道的长

2.单人双程(等量关系式:来时的路程=回时的路程):

例1:某校组织学生乘汽 车去自然保护区野营,先以
60kmh
的速度走平路,后又

30kmh的速度爬坡,共用了
6.5h
;返回时汽车以
40kmh
的速度下坡,又 以
50kmh

速度走平路,共用了
6h
.学校距自然保护区有多远 。
【分析】如果设学校距自然保护区为
x
km
,由题目条件:去时用了6.5h
,则有些同
x
学会认为总的速度为
kmh
,然后用去时 走平路的速度+去时爬坡的速度=总的速度,
6.5
x
得出方程
6030
,这种解法是错误的,因为速度是不能相加的。不妨设平路的长
6.5
xy
度 为
x
km
,坡路的长度为
y
km
,则去时走平路用了
h
,去时爬坡用了
h
,而去时
6030
y
总共用了
6.5h
,这时,时间是可以相加的;回来时汽车下坡用了
h
,回来时走平路
40
x
用了,而回来时总共用了
6h
.则学校到自然保护区的距离为
(xy)km

50
【等量关系式】去时走平路用的时间+去时爬坡用的时间=去时用的总时间
回来时走平路用的时间+回来时爬坡用的时间=回来时用的总时间
xy
6.5
6030
【列出方程组】
xy
65040
注:单人双程的行程问题抓住来时的路程=回时的路程、路程=速度×时间,再把单
人单程的行程问题练练熟就ok了,题型跟单人单程的题型差不多,把上面的例题弄懂,
这里就不多做 练习了。
3.双人行程:
(Ⅰ)单块应用:只单个应用同向而行或背向而行或相向而行或追击问
题。
1)同时同地同向而行:A,B两事物同时同地沿同一个方向行驶
例:甲车的速度为
60kmh
,乙车的速度为
80kmh
,两车同时同地出发,同向而
行。经过 多少时间两车相距
280km

【分析】如果设经过
x
h
后两车相距
280km
,则甲走的路程为
60xkm
,乙走的路程

80xkm
,根据题意可画出如下示意图:
80x km



甲 60x km 280km
【等量关系式】甲车行驶的距离+280=乙车行驶的距离
【列出方程】
60x280280x

2)同时同地背向而行:A,B两事物同时同地沿相反方向行驶
例:甲车的速度为
6 0kmh
,乙车的速度为
80kmh
,两车同时同地出发,背向而
行。经过多 少时间两车相距
280km

【分析】如果设经过
x
h
后 两车相距
280km
,则甲走的路程为
60xkm
,乙走的路程
为< br>80xkm
,根据题意可画出如下示意图:
甲 乙
60x km 80x km
280 km
【等量关系式】甲车行驶的距离+乙车行驶的距离=280
【列出方程】
60x80x280

3)同时相向而行(相遇问题):
例:甲,乙两人在相距
10km
的A,B两地相向而行,乙的速度是甲的速度的2倍, 两
人同时处发
1.5h
后相遇,求甲,乙两人的速度。
【分析】如果设甲的 速度为
xkmh
,则乙的速度为
2xkmh
,甲走过的路程为
1.5 xkm
,乙走过的路程为
1.52xkm
,根据题意可画出如下示意图:
甲 km ×2x km 乙
A B
10 km
280 km
【等量关系式】甲车行驶的距离+乙车行驶的距离=10
【列出方程】
1.5x1.52x10

4)追及问题:
例 :一对学生从学校步行去博物馆,他们以
5kmh
的速度行进
24min
后, 一名教
师骑自行车以
15kmh
的速度按原路追赶学生队伍。这名教师从出发到途中与 学生队伍
会合共用了多少时间?
【分析】如果设这名教师从出发到途中与学生队伍会合共用了
x
h
,则教师走过的
路程为
15xkm
,学生走过的路程为 教师出发前走过的路程加上教师出发后走过的路程,
24
而学生在教师出发前走过的路程为5km
,学生在教师出发后走过的路程为
5xkm

60
又由 于教师走过的路程等于学生走过的路程。根据题意可画出如下示意图:
24
学生 5x km
5km

60
教师 15x km
【等量关系式】教师走过的路程=学生在教师出发前走过的路程+学生在教师出发
后走过的路程
24
5x
【列出方程】
15x5
60
5)不同时同地同向而行(与追击问题相似): 例:甲,乙两人都从A地出发到B地,甲出发
1h
后乙才从A地出发,乙出发
3h

甲,乙两人同时到达B地,已知乙的速度为
50kmh
,问,甲的速度为多 少?


【分析】如果设甲的速度为
x
kmh
,则乙出发前甲走 过的路程为
x
km
,乙出发后
甲走过的路程为
3xkm
,甲 走过的路程等于乙出发前甲走过的路程加上乙出发后甲走过
的路程,而乙走过的路程为
503 km
,甲走过的路程等于乙走过的路程。根据题意可画
出如下示意图:
甲 x km 3x km
乙 50×3 km
【等量关系式】乙走过的路程=乙出发前甲走过的路程加上乙出发后甲走过的路程
【列出方程】
503x3x

6)不同时相向而行
例:甲, 乙两站相距
448km
,一列慢车从甲站出发,速度为
60kmh
;一列快车 从
乙站出发,速度为
100kmh
。两车相向而行,慢车先出发
32min< br>,快车开出后多少时间
两车相遇?
32
【分析】如果设快车开出后
x
h
两车相遇,则慢车走过的路程为
60x60
km

6 0
快车走过的路程为100
x
km
。根据题意可画出如下示意图:
32
慢车
60
60x 100x 快车
60
448km
【等量关系式】总路程=快车出发前慢车走过的路程 +快车出发后慢车走过的路程+
快车走过的路程
32
【列出方程】
4486060x100x

60
注:涉及此类问题的还有同时不同地同向而行、不同时不同地背向而行、不同时不
同地同向而行、不同 时不同地背向而行,与上面解法类似,只要画出示意图问题就会迎
刃而解,就不再一一给出解答了,此类 问题会在后面练习中给出习题。
(Ⅱ)结合应用:把同向而行、背向而行、相向而行、追击问题两两结
合起来应用。
1) 相向而行+背向而行
例:A,B两地相距
36km
,小明从A地骑自 行车到B地,小丽从B地骑自行车到
A地,两人同时出发相向而行,经过
1h
后两人相 遇;再过
0.5h
,小明余下的路程是小
丽余下的路程的2倍。小明和小丽骑车的速度 各是多少?
【分析】如果设小明骑车的速度为
x
,小丽骑车的速度为
y
,相遇前小明走过的路
程为
x
,小丽走过的路程为
y
;相 遇后两人背向而行,小明走过的路程为
0.5x
,小丽走
过的路程为
0.5y
。根据题意可画出如下示意图:
小明 小丽
相遇前 x y
A B
36km


小丽 小明
【等量关系式】相遇前小明走过的路程+相遇前小丽走过的路程=总路程
相遇后小明余下的路程=2×相遇后小丽余下的路程

xy36
【列出方程组】


y0.5x2(x0.5y)

2)同向而行+相向而行
例:一个 自行车队进行训练,训练时所有队员都以35千米时的速度前进,突然,
1号队员以45千米时的速度独 自行进,行进10千米后掉转车头,仍以45千米时的
速度往回骑,直到与其他队员会合。1号队员从离 队开始到与其他队员重新会合,经过
了多长时间?
【分析】由题意“1号队员以45千米时的 速度独自行进,行进10千米后掉转车
10
头”可知1号队员从离队到调转车头前的时间为h
,不妨设1号队员从调转车头到
45
与其他队员重新回合的时间为
x< br>h
。根据题意可画出如下示意图:
所有队员
10

1号队员 35x 45x

35

45
10km
【等量关系式】1号队员从离队到调转车头这段时间所有队员走的路程+1号队员从
调转车头到 与其他队员重新回合这段时间内所有队员走的路程+1号队员从调转车头到
与其他队员重新回合这段时间 内1号队员走的路程=10。
10
【列出方程】
3535x45x10

45
注 :涉及此类问题的还有同向而行+相背而行、追及+同向而行、追及+相背而行、
追及+相向而行,只要 把它们分成单个类型,按照题意一步一步求解,这里就不一一举
例了,此类问题会在后面练习中给出习题 。
举一反三:
1.甲,乙两人从楼底爬楼梯到楼顶,甲平均每分钟爬楼梯40级,乙平均每 分钟爬楼
梯50级,甲先出发
2min
,结果两人同时到达楼顶。问从楼底到楼顶共有 楼梯多少级?
2甲,乙两人在相距
100m
的两地相背而行,
30min< br>后甲,乙两人相距
4km
,已知
甲的速度为
60mmin
,求 乙的速度。
3.小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米,(1如果他
们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?(2)如果小明站在百米
跑道的起点处, 小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬。
4.一队学生去校外进行军事 野营训练。他们以
5kmh
的速度行进,走了
18min
的时
候,学 校要将一个紧急通知传给队长。通讯员从学校出发,骑自行车以
14kmh
的速度
按原 路追上去,队长出发后经过多少时间接到通知?


5.两辆汽车同时从A地出发,沿一条 公路开往B地。甲车比乙车每小时多行8千
米,甲车比乙车早40分钟到达途中的C地,当乙车到达C地 时,甲车正好到达B地。
已知C至B地的路程是40千米,求乙车每小时行多少km?
,B两 地相距
450km
,甲,乙两车分别从A,B两地同时出发,相向而行。已知甲
车速度 为
120kmh
,乙车速度为
80kmh
,经过多少小时两车相距
5 0km

7.甲乙两车同时从A地出发,在相距900千米的AB两地间不断往返行驶。已知
甲车的速度是每小时25千米,乙车的速度是每小时20千米。请问:
(1)甲车第一次从后面追上乙车是在出发后多长时间?
(2)甲车在第一次从后面追上乙车之后又经过多长时间第二次从后面追上乙车?
(3)甲乙两车第二次迎面相遇是在出发后多长时间?
4.行程问题中的工程问题:
乍一看,题目中就时间已知,速度、路程都未知,此类问题同学们做起来觉得无从
下手。其实只要把路 程看做单位“1”(至于为什么,结合以下例题讲解),这就相当
于把行程问题转化为工程问题。 例:甲开汽车从A地到B地需要
6h
,乙开汽车从A地到B地需要
4h
, 如果甲,
乙两人分别从A,B两地出发,相向而行,经过多少小时后两车相遇。
【分析】题目 中就时间已知,速度、路程都未知,有些同学想如果知道A与B的距
离,就可以得出A与B的速度,那么 问题就迎刃而解了,可是路程未知呀!是不是路
程无论取什么值,都经过相同的时间两车相遇呢?为此, 我们不妨设A与B的距离为
a
,
aa
经过
xh
后两车相遇。 我们可以立马得出关系式:
xxa
,可以把两边的
a

64
xx12
去,得到方程
1
,立马得出
x
。说明路程无 论取什么值,都经过相同的时间
645
两车相遇。遇到类似问题,我们往往把路程看做单位“1 ”。
举一反三:
1.甲从A地到B地需要
3h
,乙从A地到B地需要4h
,甲,乙两人同时从A地出
发,甲先到达B地后掉头向A方向行驶,问,甲,乙两人从 A地同时出发到两人相遇
需要多长时间?
2.甲开汽车从A地到B地需
2h
,乙骑摩托车从B地到A地需
3h
。如果乙骑摩托
车从B地出发往A地,
1h
后甲开汽车从A地往B地,那么甲出发多少时间与乙相遇?
5.环形跑道问题:
环 形跑道问题也是形成问题的一种,环形跑道问题就是闭路线上的追击问题。在环
形问题中,若两人所走同 时同地出发,同向而行,当第一次相遇时,两人所走路程差为
一周长;相向而行,第一次相遇时,两人所 走路程和为一周长。
5
例1:运动场跑道周长
400m
,小红跑步的速度是 爷爷的倍,他们从同一地点沿
3
跑道的同一方向同时出发,你知道他们的跑步速度吗?
5min
后小红第一次追上了爷爷。


那是不是再过
5min
两 人第二次相遇呢?如果不是,请说明理由;如果是,用方程式表
示。
5
【分析】不妨 设爷爷的跑步速度为
x
mmin
,则小红的跑步速度为
x
mmin< br>
3
【等量关系式】小红跑的路程—爷爷跑的路程=400m
5
【列出方程】
5x5x400

3
注:再过
5min
两人第二次相遇,用上面那个方程式就可以表示出来。
例2:甲,乙两车分别以均匀的速度在周长为
600m
的圆形轨道上运动。甲车的速< br>度较快,当两车反向运动时,每
15s
相遇一次;当两车同向运动时,每
1mi n
相遇一次,
求两车的速度。
【分析】设甲,乙两车的速度分别为
x
ms

y
ms

【等量关系式】同向而行甲所走的路程- 同向而行乙所走的路程=一周长
反向而行甲所走的路程+同向而行乙所走的路程=一周长

15x15y600
【列出方程组】


60x60y600

举一反三:
1.甲,乙两人在周长
40 0m
长的环形跑道上竞走,已知乙的速度是
80mmin
,甲的
速度是乙的倍 ,乙在甲前
100m
。问多少分钟后,甲可以追上乙?
2.甲,乙两人都以不变的速 度在环形路上跑步,相向而行,每隔
2min
相遇一次;同
向而行,每隔
6m in
相遇一次。已知甲比乙跑得快,求甲,乙两人每分钟个跑几圈?
6.水流问题
一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它的特
点主要是考虑水速 在逆行和顺行中的不同作用。基本概念和公式有:
船速:船在静水中航行的速度
水速:水流动的速度
顺水速度:船顺流航行的速度
逆水速度:船逆流航行的速度
顺速=船速+水速
逆速=船速-水速
船行速度=(顺水速度+ 逆流速度)÷2
流水速度=(顺流速度—逆流速度)÷2
路程=顺流速度× 顺流航行所需时间
路程=逆流速度×逆流航行所需时间
例1:某船在
80km
的航道上航行, 顺流航行需
1.6h
,逆流航行需
2h
。求船在静水
中航行的速度和 水流的速度。
【分析】设船在静水中航行的速度和水流的速度分别为
x

y
,顺流的速度为
8080
kmh,逆流的速度为kmh,再利用上面的公式。
1.62


【等量关系式】顺速=船速+水速
逆速=船速-水速
80
xy
1.6
【列出方程】
80
xy
2
例2:甲,乙两艘货船,甲船在前30千米处逆水而 行,乙船在后追赶。甲乙两人
的静水速度分别是36千米小时和42千米小时,水流速度是4千米小时, 求甲船行多
少时间被乙船追上?
【分析】已知甲乙两人的静水速度和水流速度,可以分别求出 甲乙两人的逆水速度,
分别为32千米小时和38千米小时。不妨设甲船行
x
小时后被 乙船追上,再根据公式
路程=逆流速度×逆流航行所需时间,则甲行驶的路程为
32x
千米,乙行驶的路程为
38x
千米,这样就可以把此问题转化为追击问题。
【等量关系式】甲行驶的路程+30=乙行驶的路程
【列出方程】
32x3038x

速度与激情7影评-晚会主持词开场白


江西警察学院教务系统-幼儿园教研工作计划


云南红河学院-生日祝福短语


国考答案-辽师研究生院


有关狼的谚语-父亲节哪一天


节日英语-三月三庙会


我是科学家-未婚证明格式


伤感日记-福建高考题