六年级奥数繁分数的运算讲座范文整理
新闻学毕业论文-大学生社会实践总结
六年级奥数繁分数的运算讲座
繁分数的运算繁分数的运算,涉及分数与小数的定义新运
算问题,综合性较强的计算问题.
.繁分数的运算必须注意多级分数的处理,如下所示:
甚至可以简单地说:“先算短分数线的,
后算长分数线
的”.找到最长的分数线,将其上视为分子,其下视为分母.
.一般情况
下进行分数的乘、除运算使用真分数或假分数,
而不使用带分数.所以需将带分数化为假分数.
.某些时候将分数线视为除号,可使繁分数的运算更加直
观.
.对于定义新运算,我们只需按题中的定义进行运算即可.
.本讲要求大家对分数运算有很好的掌握,可参阅《思维
导引详解》五年级
[第1讲循环小数与分数].
.计算:
【分析与解】原式=
.计算:
【分析与解】注意,作为被除数的这个繁分数的分子、分
母均含有.于是,我
们想到改变运算顺序,如果分子与分母
在后的两个数字的运算结果一致,那么作为被除数的这个
繁分数的值为1;如果不一致,也不会增加我们的计算量.所以我们决定改变作为被除数的繁分数的运算顺序.
而作为除数的繁分数,我们注意两个加数的分母相似,于
是统一通分为1995×0.5.
具体过程如下:
原式=
=
===
.计算:
【分析与解】原式===
.计算:已知=,则x等于多少?
【分析与解】方法一:
交叉相乘有88x+66=96x+56,x=1.25.
方法二:有,所以;所以,那么1.25.
.求这10个数的和.
【分析与解】方法一:
=
==
=
=.
方法二:先计算这10个数的个位数字和为;
加上个位的,9=36×4个数的十位数字和为10再计算这
进位的3,为;
再计算这10个数的百位数字和为4×8=32,加上十位的进
位的3,为;
再计算这10个数的千位数字和为4×7=28,加上百位的进
位的3,为;
再计算这10个数的万位数字和为4×6=24,加上千位的进
位的3,为;
再计算这10个数的十万位数字和为4×5=20,加上万位的
进位的2,为;
再计算这10个数的百万位数字和为4×4=16,加上十万位
的进位的2,为;
再计算这10个数的千万位数字和为4×3=12,加上百万位
的进位的1,为;
再计算这10个数的亿位数字和为4×2=8,加上千万位的
进位的1,为;
最后计算这10个数的十亿位数字和为4×1=4,加上亿位
上没有进位,即为.
所以,这10个数的和为4938271591.
如图1-1,每一线段的端点上两数之和算作线段的长度,
那么图中6条线段的长度之和是多少?
【分析与解】因为每个端点均有三条线段通过,所以这6
条线段的长度之和为:7.我们规
定,符号“○”表示选择
两数中
较大数的运算,例如:3.5○2.9=2.9○3.5=3.5.符
号“△”表示选择两数中较小数的
运算,例如:3.5△2.9=2.9
△3.5=2.9.请计算:
【分析与解】原式
8.规定=2×3×4,=3×4×5,=4×5
×6,=9×10×11,….如果,那么方框内应填
的数是多少?
【分析与解】=.
.从和式中必须去掉哪两个分数,才能使得余下的分数之
和等于1?
【分析与解】因为,所以,,,的和为l,因此应去掉与.
0.如图1-2排列在一个圆圈上1
0个数按顺时针次序可以
组成许多个整数部分是一位的循环小数,例如
1.892915929
.那么在所有这种数中。最大的一个是多少?
【分析与解】有整数部分尽可能大,十分位尽可能大,则
有92918……较大,于是最大的为.
1.请你举一个例子,说明“两个真分数的和可以是一个
真分数,而且这三个
分数的分母谁也不是谁的约数”.
【分析与解】有,,
评注:本题实质可以说是寻找孪生质数,为什么这么说呢?
注意到,当时,有.
两两互质时,显然满足题意.c、b、a当
显然当a、b、c为质数时一定满足,那么两个质数的和等
于另一个质数,必定有一个质数为2,不妨设a为2,那么
有,显然b、c为一对孪生质数.
即可得出一般公式:,c与c+2均为质数即可.
.计算:
【分析与解】
原式=
=
=
==.
3.已知.问a的整数部分是多少?
【分析与解】
=
=
=.
因为<
所以<.
同时>
所以a>.
综上有<a<.所以a的整数部分为101.
.问与相比,哪个更大,为什么?
【分析与解】方法一:令,,
有.
而B中分数对应的都比A中的分数大,则它们的乘积也是
B>A,
有A×A<4×B<,所以有A×A<,那么A<.
即与相比,更大.
方法二:设,
则
=,
显然、、、…、、都是小于1的,所以有A2<,于是A<.
.下面是两个1989位整数相乘:.问:乘积的各位数字之
和是多少?
【分析与解】
在算式中乘以9,再除以9,则结果不变.因
为能被9整除,所以将一个乘以9,另一个除以9,使原算
式变成:
=
=
=
得到的结果中有
1980÷9=220个“123456790”和
“987654320”及一个“12345678
”和一个“987654321”,
所以各位数之和为:
+
评注:111111111÷9=12345679;
×的数字和为9×..可以利用上面性质较快的获得结果.