三角函数和差公式
泰安岱庙-甘肃中医学院分数线
1.同角三角函数基本关系
⒈同角三角函数的基本关系式
倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系:
sinαcosα=tanα=secαcscα
cosαsinα=cotα=cscαsecα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
⒉两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)(1-tanα ·tanβ)
tan(α-β)=(tanα-tanβ)(1+tanα ·tanβ)
倍角公式
⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2c
os^2(α)-1=1-2sin^2(α)
2tanα
tan2α=—————
1-tan^2(α)
半角公式
⒋半角的正弦、余弦和正切公式(降幂扩角公式)
1-cosα
sin^2(α2)=—————
2
1+cosα
cos^2(α2)=—————
2
1-cosα
tan^2(α2)=—————
1+cosα
万能公式
⒌万能公式
2tan(α2)
sinα=——————
1+tan^2(α2)
1-tan^2(α2)
cosα=——————
1+tan^2(α2)
2tan(α2)
tanα=——————
1-tan^2(α2)
万能公式推导
附推导:
sin2α=2sinαcos
α=2sinαcosα(cos^2(α)+sin^2(α))......*,
(因为cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=tan2α(1+tan^2(α))
然后用α2代替α即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
三倍角公式
⒍三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
3tanα-tan^3(α)
tan3α=——————
1-3tan^2(α)
三倍角公式推导
附推导:
tan3α=sin3αcos3α
=(sin2αcosα+cos2αsinα)(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))(cos^3(α)-
cosαsin^2(α)-
2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^2(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
即
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
三倍角公式联想记忆
记忆方法:谐音、联想
正弦三倍角:3元 减
4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
余弦三倍角:4元3角 减
3元(减完之后还有“余”)
☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
和差化积公式
⒎三角函数的和差化积公式
α+β α-β
sinα+sinβ=2sin—----·cos—---
2 2
α+β α-β
sinα-sinβ=2cos—----·sin—----
2 2
α+β α-β
cosα+cosβ=2cos—-----·cos—-----
2
2
α+β
α-β
cosα-cosβ=-2sin—-----·sin—-----
2 2
积化和差公式
⒏三角函数的积化和差公式
sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα
·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα
·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα ·sinβ=-
0.5[cos(α+β)-cos(α-β)]
和差化积公式推导
附推导:
首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=s
ina*cosb-cosa*sinb
我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))2
同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))2
同样的,我们还知道
cos(a+b)=cosa*cosb-
sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))2
同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))2
这样,我们就得到了积化和差的四个公式:
sina*cosb=(sin(a+b)+sin(a-b))2
cosa*sinb=(sin(a+b)-sin(a-b))2
cosa*cosb=(cos(a+b)+cos(a-b))2
sina*sinb=-(cos(a+b)-cos(a-b))2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四
个公式.
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)2,b=(x-y)2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)2)*cos((x-y)2)
sinx-
siny=2cos((x+y)2)*sin((x-y)2)
cosx+cosy=2cos((x+y)2)*cos((x-y)2)