2019最新人教版六年级下册数学教案全集.docx

玛丽莲梦兔
956次浏览
2020年10月22日 21:52
最佳经验
本文由作者推荐

忻州师院-新春短信祝福语

2020年10月22日发(作者:熊佛西)




2019 最新人教版六年级下册数学教案全集






























【教学目标】

1.在熟悉的生活情境中初步认识负数 ,能正确地读写正数和负数 ,知道 0 既不是正数也不是负

数。

2.初步学会用负数表示一些日常生活中的实际问题。

3.能借助数轴初步理解正数、

0 和负数之间的关系。

【重点难点】 负数的意义和数轴的意义及画法。

【课时安排】 3 课时:

负数的初步认识

在数轴上表示正数、 0 和负数

【知识结构】

2 课时

1 课时

第 1 课时




负数的初步认识( 1)

【教学内容】








负数的初步认识

(1)(教材第 2 页例 1)。

【教学目标】

结合生活实例 ,引导学生初步理解正、负数可以表示两种相反意义的量。

【重点难点】

体会负数的重要性。

【教学准备】















多媒体课件。

【情景导入】

1.教师利用课件向学生展示教材第

2 页主题图。(有条件的可播放天气预报视频)

2.引导学生观察图片 ,说出图中内容。(教师:观察上图 ,你能发现什么? 0℃代表什么意思?

-3℃和 3℃各代表什么意思?)

引出课题并板书:负数的初步认识(

1)

【新课讲授】

教学教材第 2 页例 1。

(1)教师板书关键数据: 0℃。

1 22




(2)教师讲解 0℃的意思。 0℃表示淡水开始结冰的温度。 比 0℃低的温度叫零下温度 ,通常在
数字前加“ -”(负号):如 -3℃表示零下 3 摄氏度 ,读作负三摄氏度。比 0℃高的温度叫零上温


度 ,在数字前加“ +”(正号) ,一般情况下可省略不写:如 +3℃表示零上 3 摄氏度 ,读作正三摄氏

度 ,也可以写成 3℃,读作三摄氏度。

(3)我们来看一下课本上的图 ,你知道北京的气温吗?最高气温和最低气温都是多少呢?随
机点同学回答。


(4)刚刚同学回答得很对 ,读法也很正确。


(5)了解了北京的气温 ,下面我想请同学告诉我哈尔滨的气温 ,它与上海气温比较又怎样呢?
用手势告诉大家好吗?


学生讨论合作 ,交流反馈。


(6)请同学们把图上其它各地的温度都写出来


,并读一读。

(7)教师展示学生不同的表示方法。


(8)小结:通过刚才的学习 ,我们用“ +”和“ -”就能准确地表示零上温度和零下温度。
【课堂作业】


完成教材第 4 页的“做一做”第

1 题。


组织学生独立完成 ,指名回答。


答案: -18℃温度低。


【课堂小结】通过这节课的学习

,你有什么收获?


【课后作业完成练习册中本课时的练习。









第 1 课时 负数的初步认识( 1)
0℃
-3℃
3℃( +3℃)






































2 22




第 2 课时 负数的初步认识( 2)






【教学内容】


负数的初步认识


(2)(教材第 3 页例 2)。


【教学目标】


通过呈现存折上的明确数据 ,让学生体会负数在生活中的广泛应用 ,进一步体会负数的含义。
【重点难点】


体会引入负数的必要性 ,初步理解负数的含义。







【情景导入】


教师:上一节课我们已经一起学习了气温的表示


,谁能说一说温度都是怎样读写的?

组织学生讨论回忆上一课内容。


师:很好 ,大家都很棒。今天我们继续学习负数知识。


引出课题并板书:负数的初步认识(

2)


【新课讲授】




1.教学例 2。

(1)教师出示存折明细示意图。 (教材第 3 页的主题图)教师:同学们能说说“支出(
或( +)”这一栏的数各表示什么意义吗?组织学生分组讨论、交流

,然后指名汇报。

-)


(2)引导学生归纳总结:像 2000,500 这样的数表示的是存入的钱数

;而前面有“ -”号的数 ,


像-500,-132 这样的数表示的是支出的钱数。


(3)教师:上述数据中

500 和-500 意义相同吗?( 500 和 -500 意义相反 ,一个是存入 ,一个


是支出)。你能用刚才的方法快速而又准确地表示出向东走





100m 和向西走 200m、前进 20 步和

后退 25 步吗?说说你是怎么表示的?师把学生的表示结果一一板书在黑板上。

2.归纳正数和负数。

(1)你能把黑板上板书的这些数进行分类吗


?小组讨论交流。

(2)教师展示分类的结果 ,适时讲解。像 +8,+4,+2000,+500,+100,+20这样的数 ,我们把它们

叫做正数 ,前面的 +号也可以省略不写。像 -8,-4,-500,-20 这样的数 ,我们把它叫做负数。


(3)那么 0 应该归为哪一类呢?组织学生讨论 ,相互发表意见。师设难: “我认为 0 应该归


为正数一类。”


归纳: 0 既不是正数也不是负数

,它是正数和负数的分界点。


(4)你在什么地方见过负数?教师鼓励学生注意联系实际举出更多的例子。


【课堂作业】


完成教材第 4 页的“做一做”第

2 题。


组织学生动手填一填 ,在小组中交流检查。




3 22




答案:

正数有: 2.5



+
4


+41


5

负数有: -7



-5.2


1

3

【课堂小结】


通过这节课的学习 ,你有什么收获?


【课后作业】


完成练习册中本课时的练习。








第 2 课时 负数的初步认识( 2)


正数: +8



负数: -8

+4

+2000


-4

-2000

-500

-100

-20

+500


+100


+20




























































0 既不是正数也不是负数。

4 22




第 3 课时 在数轴上表示正数、
0 和负数






【教学内容】


借助数轴理解正数和负数的意义(教材第


5 页例 3)。

【教学目标】


1.借助数轴初步理解正数、

0、负数。


2.初步体会数轴上数的顺序

,完成对数的结构的初步构建以及正数与负数的比较。


【重点难点】


认识数轴、 0。







【情景导入】


教师用 CAI 课件演示教材第

5 页的主题图。


教师:如何在一条直线上表示出他们运动后的情况呢?


【新课讲授】


教学例 3。


(1)教师:怎样用数来表示这些学生和大树的相对位置关系呢?


组织学生在小组中议一议

,然后汇报。


(2)教师结合学生的汇报 ,用课件出示数轴 ,在相应点的下方标出对应的数。


(3)让学生说出直线上其他几个点代表的数 ,让学生对数轴上的点表示的正负数形成相对完
整的认识。


(4)教师总结:我们可以在直线上表示出正数、 0、负数 ,像这样的直线我们叫做数轴。
(5)引导学生观察数轴


:①从 0 起往右依次是?从

0 起往左依次是?你发现什么规律?


②在数轴上分别找到


1.5 和-1.5 对应的点。如果从起点分别到

1.5 和-1.5 处 ,应如何运动?


师及时小结 ,数轴除了可以表示整数

,还可以表示小数、分数。每个数都能在数轴上找到它们


相对应的点。


【课堂作业】


1.完成教材第 5 页的“做一做”。学生独立练习 ,指名汇报。


2.完成教材第 6 页练习一的第 4 题。第 4 题组织学生独立完成 ,并在小组中相互交流、检查。


教师用课件出示答案、订正。



5 22




答案:


1.略


2.第 4 题:点 A 表示的数是 -7;点 B 表示的数是 -4;点 C 表示的数是 -1;点 D 表示的数是


3;点 E 表示的数是 6。


【课堂小结】


通过这节课的学习 ,你有什么收获?


【课后作业】


完成练习册中本课时的练习。























































































第 3 课时 在数轴上表示正数、 0 和负数
上面这样的直线叫做数轴。
6 22




第二单元:百分数(二)





【教学目标】


1.理解折扣、成数、税率、利率的含义 ,知道它们在生活中的简单应用

,会进行这方面的简单


计算。


2.在理解、分析数量关系的基础上

,使学生能正确地回答有关百分数的问题。


【重点难点】


利用百分数解决实际问题。







【教学指导】


注意概念之间的联系与区别 ,以提高学生解决问题的能力。 本单元的概念较多 ,教学时要突出重
点 ,帮助学生弄清概念间的联系与区别。 只有理解了百分数的含义 ,才能正确地运用它解决百分率、
折扣、成数、税率、利率等实际问题。再如 ,百分数和分数虽然在本质上是相同的 ,但在意义上还是
有一定的区别的:百分数表示两个数之间的关 系;分数既可以表示一个具体的数、又可以表示两个数
之间的关系。


【课时安排】


建议共分 5 课时:折扣 1 课时 成数 1 课时 税率 1 课时 利率 1 课时


解决问题 1 课




【知识结构】
































第 1 课时 折扣









【教学内容】



7 22




折扣(教材第 8 页的内容 ,练习二第 1~3 题)。


【教学目标】


1.明确折扣的含义。


2.能熟练地把折扣写成分数、百分数。


3.正确解答有关折扣的实际问题。


4.学会合理、灵活地选择方法 ,锻炼运用数学知识解决实际问题的能力。


【重点难点】


1.会解答有关折扣的实际问题。


2.合理、灵活地选择方法 ,解答有关折扣的实际问题。


【教学准备】


多媒体课件。







【情景导入】


圣诞节期间各商家搞了哪 些促销活动?谁来说说他们是怎样进行促销的?(学生汇报调查
情况。)


【新课讲授】


1.教学折扣的含义 ,会把折扣改写成百分数。


(1)刚才大家调查到的打折是商家常用的手段 ,是一个商业用语 ,那么你所调查到的打折是什
么意思呢?比如说打“七折” ,你怎么理解?


(2)你们举的例子都很好 ,老师也搜集到某商场打七折的售价标签。

(电脑显示)


①大衣 ,原价: 1000 元,现价: 700 元。


②围巾 ,原价: 100 元,现价: 70 元。


③铅笔盒 ,原价: 10 元,现价:?


④橡皮 ,原价: 1 元,现价:?


(3)动脑筋想一想:如果原价是

10 元的铅笔盒 ,打七折 ,猜一猜现价会是多少?如果原价是


1 元的橡皮 ,打七折 ,现价又是多少?

(4)仔细观察 ,商品在打七折时 ,原价与现价有一个什么样的关系?带着这样的问题 ,可以利用
计算器 ,也可以借助课本 ,四人小组一起试着找到答案。


(5)讨论 ,找规律。


A.学生动手操作、计算 ,并在计算或讨论中发现规律。


B.学生汇报寻找的方法:利用计算器 ,原价乘以 70%恰好是标签的售价或现价除以原价大约




8 22




都是 70%;或查书等等。


(6)归纳 ,得定义。


A.通过小组讨论 ,谁能说说打七折是什么意思?打八折是什么意思?打八五折呢?


B.概括地讲 ,打折是什么意思?如果用分母是十的分数 ,该怎样表示?(

“几折”就是十分


之几 ,也就是百分之几十)


C.通俗来讲 ,商店有时降价出售商品 ,叫做打折扣销售 ,通称“打折”。几折就是十分之几 ,也就


是百分之几十。 如八五折就是 85%,九折就是 90%。一般情况下 ,不把折扣写成十分之几这样的分


数形式 ,写成分数时 ,有时会出现小数(例如八五折就会写成


8.5
10

),不便于计算和理解。

(7)练习。


①四折是十分之(


) ,改写成百分数是(

) ,改写成百分数是(

),改写成百分数是(

) ,改写成百分数是(

)。

)。

)。

②六折是十分之(


③七五折是十分之(


④九二折是十分之(



)。

2.运用折扣含义解决实际问题。

出示问题( 1):爸爸给小雨买了一辆自行车 ,原价 180 元,现在商店打八五折出售。买这辆车


用了多少钱?


① 导学生分析题意:打八五折怎么理解?是以谁为单位“


1”?

② 找出数量关系式。


先让学生找出单位“ 1”,然后再找出数量关系式:


原价× 85%=实际售价


③ 学生独立根据数量关系式

,列式解答。


④全班交流。根据学生的汇报

,板书: 180×85%=153(元)


答:买这辆车用了

153 元。


出示问题( 2):爸爸买了一个随身听 ,原价 160 元,现在只花了九折的钱 ,比原价便宜了多少


钱?


① 导学生理解题意:只花了九折的钱怎么理解?以谁为单位“


1”?

② 学生试算 ,独立列式。③全班交流。根据学生的汇报


,板书:

第一种算法:原价 160 元,减去现价 ,就是比原价便宜多少钱。


160-160×90%


=160-144




=16(元)

9 22




第二种算法:原价

160 元,现价比原价便宜了( 1-90%)。


160×(1-90%)


=160× 10%


=16(元)


重点引导学生理解第二种算法 ,知道现价比原价便宜了

10%。


3.典例讲析。


例 在某商店促销活动时 ,原价 800 元的某品牌自行车九折出售 ,最后剩下的几辆车 ,商家再次打
八折出售 ,最后的几辆车售价多少元?分析:原价 800 元,第一次打九折出售 ,价格是原价的90%,再
次打八折出售 ,价格是第一次打九折后的 80%。可以先求出第一次打折后的价格 ,再求出第二次打折
后的价格 ,即为现在的售价。


解: 800×90%×80%=720× 80%=576(元)


答:最后的几辆车售价是

576 元。


【课堂作业】


1.(1)爸爸买了一个剃须刀

,原价 240 元 ,现在只花了八折的钱 ,比原价便宜了多少钱?


A.打八折怎么理解?是以谁为单位“

1”?


B.学生试做 ,讲评。


(2)判断:


①商品打折扣都是以原商品价格为单位“



1”,即标准量。(



②一件上衣现在打八折出售 ,就是说比原价降低 10%。(



2.完成教材第 8 页“做一做”练习题。


3.完成教材第 13 页练习二第 1~3 题。


说明:第 1 题是一道开放题 ,有多种可能 ,应注意给学生提供交流自己想法的机会。练习后可


指出“五折”也可以说成“半价”

,丰富学生的生活经验。


第 2 题 ,要注意指导学生理解 9.6 元表示的实际含义 ,它与八折有什么关系。使学生明确


9.6

元就是打折后比原价少的钱数 ,它相当于原价的

1— 80%,在此基础上让学生列出方程或算式。


答案: 1.( 1) 240-240×80%=48(元)


(2)① √ ② ×


2.第 8 页“做一做”: 52


73.5

30.8

3.练习二第 1 题:


(1)1.5× 50%=0.75(元)







2.4 ×50%=1.2(元)

10 22




1× 50%=0.5(元)


3× 50%=1.5(元)


(2)(此 答案不唯一)可以 一种面包

,也可以两种或两种以上合 。 独 各种打折后

的面包:


①3÷0.75=4(个)


合 各种打折后的面包:


②3÷0.5=6(个)


○3
3÷1.5=2(个)


④3÷1.2=2(个)⋯⋯ 0.6(元) ,再 1 个打折后 0.5 元的面包。


⑤可以 3 个 0.5 元的面包 ,

2 个 0.75 元的面包。

可以 1 个 1.5 元的面包 , 2 个 0.75 元的面包⋯⋯第 3 :分析:按原价的八折 , 惠价占二折 ,9.6 元
占原价的 20%,求出原价 ,用除法 算。解答: 9.6÷ 20%=48(元)【 堂小 】



通 的学 你有什么收 ?

【 后作 】



完成 册中本 的 。







第 1

折扣


八五折 180×85% =153(元)


九折 160×( 1-90%) =160×10% =16(元)


: 解决与折扣有关的 上是求一个数的百分之几是多少和已知一个数的百


分之几是多少求 个数的 。在分析折扣 ,不要把打折后的价格当作定价 ,正确区分定价、 价和售价是
解决折扣 的关 。


































11 22




第 2 课时 成数







【教学内容】

成数(教材第 9 内容)。



【教学目 】

1.明确成数的含 。


2.能熟 的把成数写成分数、百分数。


3.正确解答有关成数的 。



【重点 点】

1.成数的理解。


2.成数的 算。










【教学准 】

多媒体 件。

【情景 入】

收成 , 常用“成数”来表示。例如 , 上写道:“今年我省油菜籽比去年增 二成” ⋯⋯ 教 :同学 有留意
到 似的新 道 ?(学生 相关 )【新 授】


1.介 成数的含 ,会把成数改写成分数 ,百分数。


(成数 :表示一个数是另一个数的十分之几

,通称“几成”)

,那么 些“成数”是什么意思呢?比如 ,

(1) 才大家都 了很多有成数的 展 化情况

增 “二成” ,你怎么理解?





(学生 并回答)

教 板 :

成数

二成

分数

十分之二

百分数

20%


(2) 以下成数表示什么?








①出口汽 量比去年增加三成。 里的“三成”表示什么?

②北京出游人数比去年增加两成。 里的两成表示什么?

引 学生 并回答。

2.运用成数的含 解决 。

(1)出示教材第 9 例 2:某工厂去年用
多少万千瓦 ?

(2)分析 目 ,理解 意:

350 万千瓦 ,今年比去年 二成五 ,今年用


①今年比去年 二成五怎么理解?是以哪个量 位“




1”?

12 22




②找出数量关系式。


先让学生找出单位“ 1”,然后再找出数量关系式:


今年的用电量 =去年的用电量×( 1-25%)


③学生独立根据关系式 ,列式解答。


④全班交流。


方法一: 350×( 1-25%)=350×75%=350× 0.75=262.5(万千瓦时 )


方法二: 350×( 1-25%)=350×75%=350× 75100=262.5(万千瓦时)


【课堂作业】


完成教材第 9 页“做一做”。


答案: 15000÷( 1+20%) =15000÷1.2=12500(人)


【课堂小结】


这节课我们一起学习了有关成数的知识


,你们对成数的知识有哪些了解?

【课后作业】


完成练习册中本课时的练习。






第 2 课时 成数




































































13 22




第 3 课时 税率





【教学内容】


税率(教材第 10 页有关纳税的内容 ,练习二第 6、 7 题)。


【教学目标】


1.使学生知道纳税的含义和重要意义 ,知道应纳税额和税率的含义

,以根据具体的税率计算税


款。


2.在计算税款的过程中 ,加深学生对社会现象的理解

,提高学生解决问题的能力。


3.增强学生的法制意识 ,使学生知道每个公民都有依法纳税的义务。


【重点难点】


1.税额的计算。


2.税率的理解。


【教学准备】


多媒体课件。







【情景导入】


1.口答算式。


(1)100 的 5%是多少?


(2)50 吨的 10%是多少?


(3)1000 元的 8%是多少?


(4)50 万元的 20%是多少?


2.什么是比率?


【新课讲授】


1.阅读教材第 10 页有关纳税的内容。说说:什么是纳税?


2.税率的认识。


(1)说明:纳税的种类很多 ,应纳税额的计算方法也不一样。

应纳税额与各种收入的比率叫


做税率 ,一般是由国家根据不同纳税种类定出不同的税率。


(2)试说说以下税率表示什么。 A. 商店按营业额的 5%缴纳个人所得税。这里的 5%表示什么?
B.某人彩票中奖后 ,按奖金的 20%缴纳个人所得税。这里的 20%表示什么 ?


3.税款计算。


(1)出示例 3:一家饭店十月份的营业额约是


30 万元。如果按营业额的 5%缴纳营业税 ,

14 22




这家饭店十月份应缴纳营业税约多少万元?


(2)分析题目 ,理解题意。


引导学生理解“按营业额的

5%缴纳营业税”的含义 ,明确这里的 5%是营业税与营业额比较


的结果 ,也就是缴纳的营业税占营业额的 5%,题中“十月份的营业额是

30 万元” ,因此十月份应


缴纳的营业税就是 30 万元的 5%。


(3)学生列出算式。


求一个数的百分之几是多少

,用乘法计算。


列式: 30×5%


(4)学生尝试计算。


(5)汇报交流。


30×5%这个算式有两种计算方法。

5

方法 1:把百分数化成分数来计算。 30× 5%=30×

=1.5(万元)



方法 2:把百分数化成小数来计算。

30× 5%=30×0.05=1.5(万元)


【课堂作业】


1.巩固练习:教材第

10 页“做一做”。


2.完成教材第 14 页练习二第 6 题。


答案:


1.(5000-3500)× 3%=45(元)


2.300× 3%=9(元)


【课堂小结】


这节课我们一起学习了有关纳税的知识

,你们对纳税的知识有哪些了解?


【课后作业】


1.完成练习册中本课时的练习。



2.教材第 14 页第 7 题。






第 3 课时 税率


应纳税额 =收入额×税率收入额 =应纳税额÷税率税率 =应纳税额÷收入额×

=1.5(万元)


答: 10 月份应缴纳营业税约



1.5 万元。





15 22


% 30×5%

100



























































































































16 22




第 4 课时 利率






【教学内容】


利率(教材第 11 页有关利率的内容) 。


【教学目标】


1.通过教学使学生知道储蓄的意义;明确本金、利息和利率的含义;掌握计算利息的方法


,

会进行简单计算。


2.对学生进行勤俭节约 ,积极参加储蓄以及支援国家、灾区、贫困地区建设的思想品德教育。


【重点难点】


1.掌握利息的计算方法。


2.正确地计算利息 ,解决利息计算的实际问题。


【教学准备】


多媒体课件。







【情景导入】


随着改革开放 ,社会经济不断发展 ,人民收入增加 ,人们可以把暂时不用的钱存入银行 ,储蓄起来。
这样一来可以支援国家建设 ,二来对个人也有好处 ,既安全、有计划 ,同时又得到利息 ,增加收入。那
么 ,怎样计算利息呢?这就是我们今天要学的内容。


【新课讲授】


1.介绍存款的种类、形式。


存款分为活期、整存整取和零存整取等方式。




2.阅读教材第 11 页的内容 ,自学讨论例 4,理解本金、利息、税后利息和利率的含义。 (例如:

王奶奶 2012 年月 8 月 1 日把 5000 元钱存入银行 ,整存整取两年 ,到 2013 年 8 月 1 日,王奶奶不仅

可以取回存入的 5000 元 ,还可以得到银行多付给的

150 元,共 5150 元。)(注:这里不考虑利息税)


本金 :存入银行的钱叫做本金。王奶奶存入的


5000 元就是本金。

利息:取款时银行多支付的钱叫做利息。


利率:利息和本金的比值叫做利率。


(1)利率由银行规定 ,根据国家的经济发展情况 ,利率有时会有所调整 ,利率有按月计算的 ,


也有按年计算的。


(2)阅读教材第 11 页表格 ,了解同一时期各银行的利率是一定的。




3.学会填写存款凭条。

把存款凭条画在黑板上 ,请学生尝试填写。然后评讲。(要填写的项目:户名、存期、存入金

额、存种、密码、地址等

,最后填上日期。)






4.利息的计算。

(1)出示利息的计算公式:

17 22




利息 =本金×利率×时间


(2)计算方法:


若按照 2012 年 7 月的银行利率 ,如果王奶奶的 5000 元钱整存整取 ,两年到期的利息是多少?
学生计算后交流 ,教师板书: 5000×3.75%× 2=375(元 )


加上王奶奶存入的本金 5000 元,到期时她能得到本金和利息 ,一共 5375 元。


【课堂作业】


本题是有关“打折”和“纳税”的问题 ,是百分数的具体应用 ,在练习时应让学生说说自己每一
步计算的意义 ,并进行集体订正。


【课堂小结】


通过本节课的学习 ,你学会了什么?什么叫本金?什么叫利息?什么叫利率?如何计算利


息?


【课后作业】


1.完成练习册中本课时的练习。







2.教材第 14 页第 9 题。

第 4 课时 利率


利息 =本金×利率×时间


任何一种存款 ,在计算利息时 ,都要乘以存入的时间 ,如果存款的利率是年利率 ,计算时所乘时间
单位应是年 ,如果存款的利率是月利率 ,计算时所乘时间单位应是月 ,不要一律按年计算。

























































18 22




第 5 课时 解决问题






【教学内容】


用百分数解决问题。(教材第 12 页例 5)


【教学目标】


1.熟练地掌握百分数应用题的数量关系 ,并能解决问题。


2.培养学生良好的学习习惯。


【重点难点】


认真审题 ,用百分数解决实际问题。


【教学准备】


多媒体课件。







【复习导入】

前面我们已经学习了折扣、成数、税率、利率等百分数在生活中的具体应用 ,今天我们一起来学
习它们更多的应用 ,学习新知识之前 ,我们来回忆下之前的内容。







口头列式。

(1)妈妈想买一件原价

500 元的裙子 ,五折之后这条裙子多少钱?

(2)爸爸这个月工资由原来的 6000 元涨了一成五 ,爸爸现在工资是多少?

(3)爸爸的月工资是 6000,扣除 3500 个人免税征额后的部分需要按

得税 ,他应缴个人所得税多少元?

(4)小云将压岁钱 1000 元存入银行 ,存期为 3 年,年利率为 4.25%。到期支取时 ,小云一共能
取回多少钱?

3%的税率缴纳个人所










师:这几道题分别属于什么类型的应用题?

学生交流 ,汇报。

【新课讲授】

教学例 5。

1.学生读题 ,明确已知条件及问题 ,尝试说说自己的解题思路。

2.利用提问 ,引导学生思考回答 ,归纳出解题思路。

教师:“满 100 元减 50 元”是什么意思?

引导回答:就是在总价中取整百元部分 ,每个 100 元减去 50 元。不满 100 元的零头部分不优

惠。




解题思路:

(1)在 A 商场买 ,直接用总价乘以

50%就能算出实际花费。

(2)在 B 商场买 ,先看总价中有几个 100, 230 里有两个 100,然后从总价里减去

2 个 50 元。







3.学生独立列出算式后 ,让他们计算并给出结果。

板书: A: 230×50%=115(元)

19 22








B: 230-2×50=130(元)

A
4.回顾与反思。

提问:通过计算 ,我们知道了 A 商场更省钱 ,在什么时候两个商场价格差不多呢?

反思:看起来满 100 减 50 元不如打五折实惠。如果总价能凑成整百多一点就差不多了。
【课堂作业】


完成教材第 12 页“做一做”。




学生独立完成 ,教师讲解。

答案: A 商场: 120-40=80(元)

B: 120×60%=72(元)



B 商场更省钱。
【课堂小结】
通过这节课 ,你有什么收获 ,你将如何运用到生活中呢?






【课后作业】

完成练习册中本课时的练习。

第 5 课时 解决问题



























































A 商场: 230×50%=115(元)
B 商场: 230-50× 2=130(元)
115<130,A 商场更省钱。

20 22




第三单元:圆柱与圆锥





【教学目标】


1.认识圆柱和圆锥 ,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和


高。


2.探索并掌握圆柱的侧面积、表面积的计算方法以及圆柱、圆锥体积的计算公式


,会运用公

式计算体积 ,解决相关的简单实际问题。


3.通过观察、设计和制作圆柱、圆锥模型的活动

,了解平面图形与立体图形之间的联系

,发展

学生的空间观念。使学生经历探索知识的过程


,培养学生自主解决问题的能力。

【重点难点】


1.认识并掌握圆柱和圆锥的形体特征 ,掌握圆柱表面积和体积、圆锥体积的计算方法及推导


过程。


2.利用所学的知识解决实际问题。


【课时安排】建议共分

10 课时:


1.圆柱


6 课时

3 课时

2.圆锥


整理和复习


1 课时

【知识结构】








































1.圆柱







第 1 课时 圆柱的认识
21 22









【教学内容】


圆柱的认识(教材第

17~20 页)。


【教学目标】


1.使学生了解圆柱的特征 ,认识圆柱的底面及其直径和半径

,圆柱的高、侧面及圆柱的展开图。


2.通过观察 ,认识圆柱并掌握它的特征

,建立空间观念。


3.培养学生的观察能力 ,增强从实物抽象到几何图形的能力。


【重点难点】


1.理解并掌握圆柱的特征 ,建立空间观念。


2.明确圆柱沿高展开的侧面展开图是一个长方形(或正方形)


,理解长方形(侧面展开图)

的长和宽与圆柱的底面周长和高的关系。










【情景导入】

师:今天我给大家带来一位朋友 ,你们知道它是谁吗 ?

(师拿起圆柱体模型 ,让学生一起说出它的名字。 )


师:在一年级我们就看见过它 ,却没有深刻认识它 ,想不想进一步认识它?


师:好 ,那么我们这节课就来认识一下圆柱 ,一起走近它 ,看看它究竟有什么奥秘。
(教师板书课题:圆柱的认识。 )


【新课讲授】



1.初步感知圆柱。

(1)大家找一找我们生活的周围有哪些圆柱形的物体 ,谁能说一说?(师指名回答)
(2)教师展示课件中常见的圆柱形物体。


(3)教师 :这些物体有哪些共同的特点?大家也可以拿出自己手中的圆柱形物体看一看


,摸

一摸。


(4)教师又拿出几个不是圆柱 ,接近圆柱形物体 ,然后问:它们是圆柱吗?为什么?那么什


么样的物体才是真正的圆柱?


学生回答后 ,教师强调:圆柱一定是直直的 ,上下一样粗细。























2.教学例 1。

22 22

在职研究生成绩查询-商务日语就业前景


自制苏打水-森林中的绅士


中秋节的对联-师生之间的作文


科学生男生女法-宁夏教育院


承德民族师范学院-赞美老师的短文


西安财经学院专科-内蒙古民族大学教务处


小学谚语大全-菜根谭读后感


实现共产主义-计算机专业自荐信