小学四年级数学鸡兔同笼练习题及答案

绝世美人儿
958次浏览
2020年10月24日 02:25
最佳经验
本文由作者推荐

长沙卫生职业学院-物联网工程就业前景

2020年10月24日发(作者:桓玄)


精品文档

小学四年级数学鸡兔同笼练习题及答案
第九节鸡兔同笼问题
基本公式是:兔数=÷
鸡兔同笼问题例题透析
1
1、有若干只鸡和兔子,它们共有88个头,244只脚,
鸡和兔各有多少只?
解 :我们设想,每只鸡都是“金鸡独立”,一只脚站
着;而每只兔子都用两条后腿,像人一样用两只脚站着 .现
在,地面上出现脚的总数的一半,也就是244÷2=122.在122
这个数里,鸡的头 数算了一次,兔子的头数相当于算了两次.
因此从122减去总头数88,剩下的就是兔子头数122- 88=34,
有34只兔子.当然鸡就有54只.
答:有兔子34只,鸡54只.
上面的计算,可以归结为下面算式:总脚数÷2-总头
数=兔子数. 上面的解法是 《孙子算经》中记载的.做一次除
法和一次减法,马上能求出兔子数,多简单!能够这样算,
主 要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可
是,当其他问题转化成这类问题时,“脚数” 就不一定是4
和2,上面的计算方法就行不通.因此,我们对这类问题给出
一种一般解法.还说 此题.
如果设想88只都是兔子,那么就有4×88只脚,比244
2016全新精品资料-全新公文范文- 全程指导写作 –独家原创
1 22


精品文档
只脚多了8×4-244=108.每只鸡比兔子少只脚,所以共有 鸡
÷=4.说明我们设想的88只“兔子”中,有54只不是兔子.
而是鸡.因此可以列出公式 鸡数=÷.
当然,我们也可以设想88只都是“鸡”,那么共有脚
2×88=17 6,比244只脚少了244-176=68.每只鸡比每只兔子
少只脚,68÷2=34.说明设想中 的“鸡”,有34只是兔子,
也可以列出公式兔数=÷.
上面两个公式不必都用,用其中一个算出兔数或鸡数,
再用总头
数去减,就知道另一个数.假设全是鸡,或者全是兔,
通常用这样的思路求解,有人称为“假设法”.
鸡兔同笼问题例题透析
2
红铅笔每支0.19元, 蓝铅笔每支0.11元,两种铅笔
共买了16支,花了2.80元.问红、蓝铅笔各买几支?
解:以“分”作为钱的单位.我们设想,一种“鸡”有
11只脚,一种“兔子”有19只脚,它们共有1 6个头,280
只脚.
现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有蓝笔数=÷=24÷8=3.红笔数
=16-3=13. 答:买了13支红铅笔和3支蓝铅笔.
对于这类问题的计算,常常可以利用已知脚数的特殊
2016全新精品资料-全新公文范文- 全程指导写作 –独家原创
2 22


精品文档
性.例2中的“脚数”19与11之和是30.我们也可以设想16
只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚
数是8×=240.比280少40 .40÷=5.就知道设想中的8只
“鸡”应少5只,也就是“鸡”数是3。30×8比19×16或< br>11×16要容易计算些.利用已知数的特殊性,靠心算来完成
计算.
实际 上,可以任意设想一个方便的兔数或鸡数.例如,
设想16只中,“兔数”为10,“鸡数”为6,就有 脚数
19×10+11×6=256.比280少24.24÷=3,就知道设想6只
“鸡”, 要少3只. 要使设想的数,能给计算带来方便,常
常取决于你的心算本领.
鸡兔同笼问题例题透析
3

一份稿件,甲单独打字需6小时完 成.乙单独打字需10
小时完成,现在甲单独打若干小时后,因有事由乙接着打完,
共用了7小 时.甲打字用了多少小时?
解:我们把这份稿件平均分成30份,甲每小时打
30÷6=5,乙每小时打30÷10=3.
现在把甲打字的时间看成“兔”头数,乙打字的时间
看成
“鸡”头数,总头数是7.“兔”的脚数是5,“鸡”的
2016全新精品资料-全新公文范文- 全程指导写作 –独家原创
3 22


精品文档
脚数是3,总脚数是30,就把问题转化成“鸡兔同笼”问题
了.根据前面的公式 “兔”数= ÷=4.5,“鸡”数
=7-4.5=2.5,也就是甲打字用了4.5小时,乙打字用了2.5
小时.
答:甲打字用了4小时30分.
鸡兔同笼问题例题透析4
今年是1998年,父母年龄和是78岁,兄弟的年龄和
是17岁.四年后父的年龄 是弟的年龄的4倍,母的年龄是兄
的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公
元 哪一年?
解:4年后,两人年龄和都要加8.此时兄弟年龄之和
是17+8=25 ,父母年龄之和是78+8=86.我们可以把兄的年龄
看作“鸡”头数,弟的年龄看作“兔”头数.2 5是“总头
数”.86是“总脚数”.根据公式,兄的年龄是÷=14.1998
年,兄年龄是 14-4=10.父年龄是×4-4=40.因此,当父的年
龄是兄的年龄的3倍时,兄的年龄是÷=1 5.这是2003年.
答:公元2003年时,父年龄是兄年龄的3倍.
鸡兔同笼问题例题透析5
蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条
腿和 1对翅膀.现在这三种小虫共18只,有118条腿和20
对翅膀.每种小虫各几只? 解:因为蜻蜓和 蝉都有6条腿,
所以从腿的数目来考虑,可以把小虫分成“8条腿”与“6
2016全新精品资 料-全新公文范文-全程指导写作 –独家原创
4 22


精品文档
条腿”两种.利用公式就可以算出8条腿的 蜘蛛数=÷=5.因
此就知道6条腿的小虫共18-5=13.也就是蜻蜓和蝉共有13
只,它 们共有20对翅膀.再利用一次公式蝉数=÷=6.因此蜻
蜓数是13-6=7. 答:有5只蜘蛛,7只蜻蜓,6只蝉.
鸡兔同笼问题例题透析6
某次数 学考试考五道题,全班52人参加,共做对181
道题,已知每人至少做对1道题,做对1道的有7人, 5道
全对的有6人,做对2道和3道的人数一样多,那么做对4
道的人数有多少人? 解:对2道、3道、4道题的人共有
52-7-6=39.他们共做对 181-1×7-5×6=14 4.由于对2道和3
道题的人数一样多,我们就可以把他们看作是对2.5道题的
人÷2=2. 5).这样兔脚数=4,鸡脚数=2.5,总脚数=144,总
头数=39.对4道题的有÷=31.
答:做对4道题的有31人.
鸡兔同笼练习题
1.鸡兔共100只,共有脚280只,鸡兔各有多少只?
2.在一棵松树上有百灵鸟和松鼠共15只,总共有48
条腿,百灵鸟和松鼠各有多少只?
3.56个学生去划船,共乘坐10只船恰好坐满,其中大
船坐6人,小船坐4人,大船和小船各几只?
4.一辆卡车运矿石,晴天每天可运16次,雨天每天只
能运11次,它一连运了1 7天,共运了222次,问这些天中
2016全新精品资料-全新公文范文-全程指导写作 –独家原创
5 22


精品文档
有多少天下雨?
5.某 食堂买来的面粉是米的5倍,如果每天吃30千克
米,75千克面粉,几天后米吃完了,而面粉还剩下2 25千克,
这个食堂买来的米和面粉各多少千克?
6.鸡和兔放在一只笼子里,共有29个头和92只脚,
那么笼中有多少只兔?
7.15元钱买50分邮票和20分邮票共63张,那么20
分邮票与50分邮票相差多少张?
8.人民路小学的教师和学生共100人去植树,教师每
人栽3棵树,学生平均每3 个人栽1棵,一共栽100棵。那
么,有多少名学生参加植树?
9.张三买了两种 戏票一共30张,付出200元,找回5
元。甲种票每张7元,乙种票每张6元。张三买了多少张甲种票?
10.杨帆每学期的21次测验成绩全是4分或5分。总
共加起来是100分。他得了多少次5分?
11.给货主运2000箱玻璃。合同规定,完好?a
href=“http:fanwenshuoshuodaquan”
target=“_blank” class=“keylink”>说揭幌涓朔?元,
损坏 一箱不给运费,还要赔给货主40元。将这批玻璃运到
后收到运货款9190元,损坏了多少箱?
12.20分和50分的邮票共36枚,共值9元9角,那么
2016全新精品资料-全新公文范文- 全程指导写作 –独家原创
6 22


精品文档
两种邮票分别有多少枚?
13.有一堆土方共 400方,有大小两辆汽车,大车一次
拉了7方,小车一次拉4方,运完这堆土共拉了70车。那
么大车拉了多少次?
14.电视机厂每天生产电视机500台,在质量评比中,
每生产一台合格电视机记5分,每生产一台不合格电视机扣
18分。如果四天得了9931分,那么这四 天生产了多少台合
格电视机?
15.松鼠妈妈采松子,晴天每天可采20个,雨天 每天
可采12个,它一连几天采了112个松子,平均每天采14个,
那么这几天当中共有几个 雨天?
16.有大小拖拉机共30台,今天一共耕地112公顷,
大拖拉机每天耕 地5公顷,小拖拉机每天耕地3公顷,大小
拖拉机各有几台?
17.现有大小塑料 桶共50个,每个大桶可装果汁4千
克,每个小桶可装果汁2千克,大桶和小桶共装果汁120千
克。问大小塑料桶各有多少个?
18.某运动员进行射击考核,共打20发子弹。规定每
中一发记20分,脱靶一发扣12分,最后这名运动员共得240
分。问这名运动员共打中几发 ?
19.某校在组织篮、排球联赛之前一次拿出720元人民
币,准备购置一些比 赛用球。已知一个篮球比一个排球要贵
2016全新精品资料-全新公文范文-全程指导写作 –独家原创
7 22


精品文档
20元,6个篮球和8个排球的价格相等。请你算一算,如果
用这些钱都买篮球能买多少个?如果都买排球能买多少
个?
20.蜘蛛有8条腿 ,蜻蜒有6条腿和2对翅膀,蝉有6
条腿和一对翅膀。现有这三种小虫16只,共有110条腿和
14对翅膀。问:每种小虫各几只?
21.搬运1000只玻璃瓶,规定安全运到1只可 得搬运
费3角,但打碎1只,不但不给搬运费,还要赔5角。如果
运完后共得运费260元,那 么,搬运中打碎了几只玻璃瓶?
22、一辆卡车装运玻璃仪器360个,每个运费5元,< br>若损坏一个仪器不但不给运费,还要赔50元,结果司机只
收到运费1250元,问损坏了几个仪 器?
小学四年级数学奥数练习题鸡兔同笼问题
第九节鸡兔同笼问题
基本公式是:兔数=÷
鸡兔同笼问题例题透析
1
1、有若干只鸡和兔子,它们共有88个头,244只脚,
鸡和兔各有多少只?
解:我们设想,每只鸡都是“金鸡独立”,一只脚站
着;而每只兔子都用两条后腿, 像人一样用两只脚站着.现
在,地面上出现脚的总数的一半,也就是244÷2=122.在1222016全新精品资料-全新公文范文-全程指导写作 –独家原创
8 22


精品文档
这个数里,鸡的头数算了一次,兔子的头数相 当于算了两次.
因此从122减去总头数88,剩下的就是兔子头数122-88=34,
有3 4只兔子.当然鸡就有54只.
答:有兔子34只,鸡54只.
上面的计算,可以归结为下面算式:总脚数÷2-总头
数=兔子数. 上面的解法是《孙子算经》中记载 的.做一次除
法和一次减法,马上能求出兔子数,多简单!能够这样算,
主要利用了兔和鸡的脚 数分别是4和2,4又是2的2倍.可
是,当其他问题转化成这类问题时,“脚数”就不一定是4
和2,上面的计算方法就行不通.因此,我们对这类问题给出
一种一般解法.还说此题.
如果设想88只都是兔子,那么就有4×88只脚,比244
只脚多了8×4-244=108.每只鸡 比兔子少只脚,所以共有鸡
÷=4.说明我们设想的88只“兔子”中,有54只不是兔子.
而 是鸡.因此可以列出公式鸡数=÷.
当然,我们也可以设想88只都是“鸡”,那么共有脚
2×88=176,比244只脚少了244-176=68.每只鸡比每只兔子
少只脚,68 ÷2=34.说明设想中的“鸡”,有34只是兔子,
也可以列出公式兔数=÷.
上面两个公式不必都用,用其中一个算出兔数或鸡数,
再用总头
数去减,就知道另一个数.假设全是鸡,或者全是兔,
2016全新精品资料-全新公文范文- 全程指导写作 –独家原创
9 22


精品文档
通常用这样的思路求解,有人称为“假设法”.
鸡兔同笼问题例题透析
2
红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔
共买了
16支,花了2.80元.问红、蓝铅笔各买几支?
解:以“分”作为钱的单位.我们设想 ,一种“鸡”有
11只脚,一种“兔子”有19只脚,它们共有16个头,280
只脚.
现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.
利用上面算兔数公式,就有蓝 笔数=÷=24÷8=3.红笔数
=16-3=13. 答:买了13支红铅笔和3支蓝铅笔.
对于这类问题的计算,常常可以利用已知脚数的特殊
性.例2中的“脚数”19与1 1之和是30.我们也可以设想16
只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚
数是8×=240.比280少40.40÷=5.就知道设想中的8只
“鸡”应少5只,也就是“鸡” 数是3。30×8比19×16或
11×16要容易计算些.利用已知数的特殊性,靠心算来完成
计算.
实际上,可以任意设想一个方便的兔数或鸡数.例如,
设想16只中,“ 兔数”为10,“鸡数”为6,就有脚数
19×10+11×6=256.比280少24.24÷=3 ,就知道设想6只
2016全新精品资料-全新公文范文-全程指导写作 –独家原创
10 22


精品文档
“鸡”,要少3只. 要使设想的数,能给计算带来方便,常
常取决于你的心算本领.
鸡兔同笼问题例题透析
3
一份稿件,甲单独打字需6小时完成.乙单独打字需10
小时
完成,现在甲单独打若干小时后,因有事由乙接着打
完,共用了7小时.甲打字用了多少小时?
解:我们把这份稿件平均分成30份,甲每小时打
30÷6=5,乙每小时打30÷10=3.
现在把甲打字的时间看成“兔”头数,乙打字的时间
看成
“鸡” 头数,总头数是7.“兔”的脚数是5,“鸡”的
脚数是3,总脚数是30,就把问题转化成“鸡兔同笼 ”问题
了.根据前面的公式 “兔”数=÷=4.5,“鸡”数
=7-4.5=2.5,也就是 甲打字用了4.5小时,乙打字用了2.5
小时.
答:甲打字用了4小时30分.
鸡兔同笼问题例题透析4
今年是1998年,父母年龄和是78岁,兄弟的年龄和
是17岁.四年后父的年龄是弟的 年龄的4倍,母的年
龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,
2016全新 精品资料-全新公文范文-全程指导写作 –独家原创
11 22


精品文档
是公元哪一年?
解: 4年后,两人年龄和都要加8.此时兄弟年龄之和
是17+8=25,父母年龄之和是78+8=86. 我们可以把兄的年龄
看作“鸡”头数,弟的年龄看作“兔”头数.25是“总头
数”.86是“ 总脚数”.根据公式,兄的年龄是÷=14.1998
年,兄年龄是14-4=10.父年龄是×4-4 =40.因此,当父的年
龄是兄的年龄的3倍时,兄的年龄是÷=15.这是2003年.
答:公元2003年时,父年龄是兄年龄的3倍.
鸡兔同笼问题例题透析5
蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条
腿和1对翅膀.现在这三种小虫共18只,有118 条腿和20
对翅膀.每种小虫各几只? 解:因为蜻蜓和蝉都有6条腿,
所以从腿的数目来考虑 ,可以把小虫分成“8条腿”与“6
条腿”两种.利用公式就可以算出8条腿的 蜘蛛数=÷=5.因< br>此就知道6条腿的小虫共18-5=13.也就是蜻蜓和蝉共有13
只,它们共有20对翅膀.再 利用一次公式蝉数=÷=6.因此蜻
蜓数是13-6=7. 答:有5只蜘蛛,7只蜻蜓,6只蝉.
鸡兔同笼问题例题透析6
某次数学考试考五道题,全班52人参加,共做对181
道题,
已知每人至少做对 1道题,做对1道的有7人,5道全
对的有6人,做对2道和3道的人数一样多,那么做对4道
2016全新精品资料-全新公文范文-全程指导写作 –独家原创
12 22


精品文档
的人数有多少人? 解:对2道、3道、4道题的人共有
52-7-6=39.他们共做对 181-1×7-5×6=14 4.由于对2道和3
道题的人数一样多,我们就可以把他们看作是对2.5道题的
人÷2=2. 5).这样兔脚数=4,鸡脚数=2.5,总脚数=144,总
头数=39.对4道题的有÷=31.
答:做对4道题的有31人.
鸡兔同笼练习题
1.鸡兔共100只,共有脚280只,鸡兔各有多少只?
2.在一棵松树上有百灵鸟和松鼠共15只,总共有48
条腿,百灵鸟和松鼠各有多少只?
3.56个学生去划船,共乘坐10只船恰好坐满,其中大
船坐6人,小船坐4人,大船和小船各几只?
4.一辆卡车运矿石,晴天每天可运16次,雨天每天只
能运11次,它一连运了1 7天,共运了222次,问这些天中
有多少天下雨?
5.某食堂买来的面粉是米的 5倍,如果每天吃30千克
米,75千克面粉,几天后米吃完了,而面粉还剩下225千克,
这 个食堂买来的米和面粉各多少千克?
6.鸡和兔放在一只笼子里,共有29个头和92只脚,
那么笼中有多少只兔?
7.15元钱买50分邮票和20分邮票共63张,那么20
分邮票与50分邮票相差多少张?
2016全新精品资料-全新公文范文-全程指导写作 –独家原创
13 22


精品文档
8.人民路小学的教师和学生共 100人去植树,教师每
人栽3棵树,学生平均每3个人栽1棵,一共栽100棵。那
么,有多 少名学生参加植树?
9.张三买了两种戏票一共30张,付出200元,找回5
元 。甲种票每张7元,乙种票每张6元。张三买了多少张甲
种票?
10.杨帆每学期的21次测验成绩全是4分或5分。总
共加起来是100分。他得了多少次5分?
11.给货主运2000箱玻璃。合同规定,完好运到一箱给
运费5元,损坏一箱不给 运费,还要赔给货主40元。将这
批玻璃运到后收到运货款9190元,损坏了多少箱?
12.20分和50分的邮票共36枚,共值9元9角,那么
两种邮票分别有多少枚?
13.有一堆土方共400方,有大小两辆汽车,大车一次
拉了7方,小车一次拉4方,运完这堆土共拉 了70车。那
么大车拉了多少次?
14.电视机厂每天生产电视机500台,在质 量评比中,
每生产一台合格电视机记5分,每生产一台不合格电视机扣
18分。如果四天得了9 931分,那么这四天生产了多少台合
格电视机?
15.松鼠妈妈采松子,晴天每 天可采20个,雨天每天
可采12个,它一连几天采了112个松子,平均每天采14个,
20 16全新精品资料-全新公文范文-全程指导写作 –独家原创
14 22


精品文档
那么这几天当中共有几个雨天?
16.有大小拖拉机共30台,今天一共耕地112公顷,
大拖拉机每天耕地5公顷,小拖拉机每天耕地 3公顷,大小
拖拉机各有几台?
17.现有大小塑料桶共50个,每个大桶可装果 汁4千
克,每个小桶可装果汁2千克,大桶和小桶共装果汁120千
克。问大小塑料桶各有多少 个?
18.某运动员进行射击考核,共打20发子弹。规定每
中一发记20分,脱 靶一发扣12分,最后这名运动员共得240
分。问这名运动员共打中几发?
19 .某校在组织篮、排球联赛之前一次拿出720元人民
币,准备购置一些比赛用球。已知一个篮球比一个 排球要贵
20元,6个篮球和8个排球的价格相等。请你算一算,如果
用这些钱都买篮球能买多 少个?如果都买排球能买多少
个?
20.蜘蛛有8条腿,蜻蜒有6条腿和2对翅膀 ,蝉有6
条腿和一对翅膀。现有这三种小虫16只,共有110条腿和
14对翅膀。问:每种小 虫各几只?
21.搬运1000只玻璃瓶,规定安全运到1只可得搬运
费3角,但 打碎1只,不但不给搬运费,还要赔5角。如果
运完后共得运费260元,那么,搬运中打碎了几只玻璃 瓶?
22、一辆卡车装运玻璃仪器360个,每个运费5元,
2016全新精品资料-全新公文范文- 全程指导写作 –独家原创
15 22


精品文档
若损坏一个仪器不但不给运费,还要赔50元,结果司机只
收到运费1250元,问损坏了几个仪器?
小学四年级数学奥数练习题鸡兔同笼问题
第九节鸡兔同笼问题
基本公式是:兔数=÷
鸡兔同笼问题例题透析
1
1、有若干只鸡和兔子,它们共有88个头,244只脚,
鸡和兔各有多少只?
解 :我们设想,每只鸡都是“金鸡独立”,一只脚站
着;而每只兔子都用两条后腿,像人一样用两只脚站着 .现
在,地面上出现脚的总数的一半,也就是244÷2=122.在122
这个数里,鸡的头 数算了一次,兔子的头数相当于算了两次.
因此从122减去总头数88,剩下的就是兔子头数122- 88=34,
有34只兔子.当然鸡就有54只.
答:有兔子34只,鸡54只.
上面的计算,可以归结为下面算式:总脚数÷2-总头
数=兔子数. 上面的解法是 《孙子算经》中记载的.做一次除
法和一次减法,马上能求出兔子数,多简单!能够这样算,
主 要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可
是,当其他问题转化成这类问题时,“脚数” 就不一定是4
和2,上面的计算方法就行不通.因此,我们对这类问题给出
2016全新精品资 料-全新公文范文-全程指导写作 –独家原创
16 22


精品文档
一种一般解法.还说此题.
如果设想88只都是兔子,那么就有4×88只脚,比244
只脚多了8×4-244=108.每只鸡 比兔子少只脚,所以共有鸡
÷=4.说明我们设想的88只“兔子”中,有54只不是兔子.
而 是鸡.因此可以列出公式鸡数=÷.
当然,我们也可以设想88只都是“鸡”,那么共有脚
2×88=176,比244只脚少了244-176=68.每只鸡比每只兔子
少只脚,68 ÷2=34.说明设想中的“鸡”,有34只是兔子,
也可以列出公式兔数=÷.
上面两个公式不必都用,用其中一个算出兔数或鸡数,
再用总头
数去减,就知道另一个数.假设全是鸡,或者全是兔,
通常用这样的思路求解,有人称为“假设法”.
鸡兔同笼问题例题透析
2
红铅笔每支0.19元, 蓝铅笔每支0.11元,两种铅笔
共买了16支,花了2.80元.问红、蓝铅笔各买几支?
解:以“分”作为钱的单位.我们设想,一种“鸡”有
11只脚,一种“兔子”有19只脚,它们共有1 6个头,280
只脚.
现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有蓝笔数=÷=24÷8=3.红笔数
2016全新精品资料- 全新公文范文-全程指导写作 –独家原创
17 22


精品文档
=16-3=13. 答:买了13支红铅笔和3支蓝铅笔.
对于这类问题的计算,常常可以利用已知脚数的特殊
性.例2中的“脚数”19与1 1之和是30.我们也可以设想16
只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚
数是8×=240.比280少40.40÷=5.就知道设想中的8只
“鸡”应少5只,也就是“鸡” 数是3。30×8比19×16或
11×16要容易计算些.利用已知数的特殊性,靠心算来完成
计算.
实际上,可以任意设想一个方便的兔数或鸡数.例如,
设想16只中,“ 兔数”为10,“鸡数”为6,就有脚数
19×10+11×6=256.比280少24.24÷=3 ,就知道设想6只
“鸡”,要少3只. 要使设想的数,能给计算带来方便,常
常取决于你的心算本领.
鸡兔同笼问题例题透析
3
一份稿件,甲单独打字需6小时完成.乙单独 打字需10
小时完成,现在甲单独打若干小时后,因有事由乙接着打完,
共用了7小时.甲打字 用了多少小时?
解:我们把这份稿件平均分成30份,甲每小时打
30÷6=5,乙每小时打30÷10=3.
现在把甲打字的时间看成“兔”头数,乙打字的时间
看成
2016全新精品资料-全新公文范文-全程指导写作 –独家原创
18 22


精品文档
“鸡”头数,总头数是7.“兔” 的脚数是5,“鸡”的
脚数是3,总脚数是30,就把问题转化成“鸡兔同笼”问题
了.根据前 面的公式 “兔”数=÷=4.5,“鸡”数
=7-4.5=2.5,也就是甲打字用了4.5小时,乙 打字用了2.5
小时.
答:甲打字用了4小时30分.
鸡兔同笼问题例题透析4
今年是1998年,父母年龄和是78岁,兄弟的年龄和
是17岁.四年后父的年龄是弟的年龄的4倍,母的年龄是兄
的年龄的3倍.那么当父的年龄是兄的年龄 的3倍时,是公
元哪一年?
解:4年后,两人年龄和都要加8.此时兄弟年龄之和
是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄
看作“鸡”头数,弟 的年龄看作“兔”头数.25是“总头
数”.86是“总脚数”.根据公式,兄的年龄是÷=14.19 98
年,兄年龄是14-4=10.父年龄是×4-4=40.因此,当父的年
龄是兄的年龄的 3倍时,兄的年龄是÷=15.这是2003年.
答:公元2003年时,父年龄是兄年龄的3倍.
鸡兔同笼问题例题透析5
蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条
腿和1对翅膀.现在这三种小虫共18只,有118 条腿和20
对翅膀.每种小虫各几只? 解:因为蜻蜓和蝉都有6条腿,
2016全新精品资料-全新公文范文-全程指导写作 –独家原创
19 22


精品文档
所以从腿的数目来考虑,可以把小虫分成“ 8条腿”与“6
条腿”两种.利用公式就可以算出8条腿的 蜘蛛数=÷=5.因
此就知道6条 腿的小虫共18-5=13.也就是蜻蜓和蝉共有13
只,它们共有20对翅膀.再利用一次公式蝉数= ÷=6.因此蜻
蜓数是13-6=7. 答:有5只蜘蛛,7只蜻蜓,6只蝉.
鸡兔同笼问题例题透析6
某次数学考试考五道题,全班52人参加,共做对181
道题,已知每人至少做对1道题,做对1道的有7人,5道
全对的有6人,做对2道和3道的人数一样多 ,那么做对4
道的人数有多少人? 解:对2道、3道、4道题的人共有
52-7-6=39.他们共做对 181-1×7-5×6=14 4.由于对2道和3
道题的人数一样多,我们就可以把他们看作是对2.5道题的
人÷2=2. 5).这样兔脚数=4,鸡脚数=2.5,总脚数=144,总
头数=39.对4道题的有÷=31.
答:做对4道题的有31人.
鸡兔同笼练习题
1.鸡兔共100只,共有脚280只,鸡兔各有多少只?
2.在一棵松树上有百灵鸟和松鼠共15只,总共有48
条腿,百灵鸟和松鼠各有多少只?
3.56个学生去划船,共乘坐10只船恰好坐满,其中大
船坐6人,小船坐4人,大船和小船各几只?
4.一辆卡车运矿石,晴天每天可运16次,雨天每天只
2016全新精品资料- 全新公文范文-全程指导写作 –独家原创
20 22


精品文档
能运11次,它一连运了17天,共运了222次,问这些天中
有多少天下雨?
5.某食堂买来的面粉是米的5倍,如果每天吃30千克
米,75千克面粉,几天后米吃完了,而面粉还 剩下225千克,
这个食堂买来的米和面粉各多少千克?
6.鸡和兔放在一只笼子里,共有29个头和92只脚,
那么笼中有多少只兔?
7.15元钱买50分邮票和20分邮票共63张,那么20
分邮票与50分邮票相差多少张?
8..张三买了两种戏票一共30张,付出200元,找回5
元。甲种票每张7元, 乙种票每张6元。张三买了多少张甲
种票?
10.杨帆每学期的21次测验成绩全是4分或5分。总
共加起来是100分。他得了多少次5分?
11.给货主运2000箱玻璃。合同规定,完好运到一箱
给运费5元,损坏一箱不 给运费,还要赔给货主40元。将
这批玻璃运到后收到运货款9190元,损坏了多少箱?
12.20分和50分的邮票共36枚,共值9元9角,那么
两种邮票分别有多少枚?
13. 14.电视机厂每天生产电视机500台,在质量评比
中,每生产一台合格电视机记5分,每生 产一台不合格电视
机扣18分。如果四天得了9931分,那么这四天生产了多少
2016全新 精品资料-全新公文范文-全程指导写作 –独家原创
21 22


精品文档
台合格电视机?
15 .松鼠妈妈采松子,晴天每天可采20个,雨天每天
可采12个,它一连几天采了112个松子,平均每 天采14个,
那么这几天当中共有几个雨天?
16. 17. 18. 19.某 校在组织篮、排球联赛之前一次拿
出720元人民币,准备购置一些比赛用球。已知一个篮球比
一个排球要贵20元,6个篮球和8个排球的价格相等。请你
算一算,如果用这些钱都买篮球能买多少个 ?如果都买排球
能买多少个?
20.蜘蛛有8条腿,蜻蜒有6条腿和2对翅膀,蝉 有6
条腿和一对翅膀。现有这三种小虫16只,共有110条腿和
14对翅膀。问:每种小虫各 几只?
21.搬运1000只玻璃瓶,规定安全运到1只可得搬运
费3角,但打碎 1只,不但不给搬运费,还要赔5角。如果
运完后共得运费260元,那么,搬运中打碎了几只玻璃瓶?
22、



2016全新精品资料-全新公文范文- 全程指导写作 –独家原创
22 22

雪狼湖-数学教研组计划


伊斯兰教派别-德育计划


保险销售技巧-语文迷


秋天的句子-医学生社会实践报告


日记150字大全-演讲比赛领导讲话


人民币贬值的影响-长辈祝福语


长沙环境保护职业技术学院-办公室主任年终总结


建国大业读后感-七年级上册历史试卷