六年级行程问题专题
王宝强离婚了吗-教师节寄语
六年级行程问题复习题
课 题
教学目标
重
点
难 点
行程问题(小升初第三讲)
复习相遇问题、追及问题、航船问题、火车过桥问题,让学生养成画路程示意图的习惯帮助解题。
相遇问题、追及问题、航船问题、火车过桥问题
相遇问题、追及问题、航船问题、火车过桥问题
行程问题需要用到的基本关系:路程=速度
时间
速度=路程
时间 时间=路程
速度
题型一、相遇问题与追及问题
相遇问题当中:相遇路程=速度和
相遇时间
追及问题当中:追及路程=速度差
追及时间
*************
画路程图时必须注意每一段路程对应的问题是相遇问题还是追及问题***********
【例题1
】甲、乙两人从A地到B地,丙从B地到A地。他们同时出发,甲骑车每小时行8千米,
丙骑车每小时行
10千米,甲丙两人经过5小时相遇,再过1小时,乙、丙两人相遇。求乙的速度?
考点:多次相遇问题.
分析:本题可先据甲丙两人速度和及相遇时间求出总路程,再根据乙丙
两人的相遇时间求出乙丙两人的速度
和之后就能求出乙的速度了.
解答:解:(8+10)×5÷(5+1)-10
=18×5÷6-10,
=15-10,
=5(千米).
答:乙每小时行5千米.
点评:本题据相遇问题的基本关系式:速度和×相遇时间=路程,进行解答即可.
【例题2】甲、乙两人同时从A、B两地相向而行,第一次在离A地40米处相遇,相遇之后继续
前进到
达目的地后又立刻返回,第二次相遇在离B地30米处,求A、B两地相距多远?
分析:两次相遇问题,其实两车一起走了3段两地距离,当然也用了3倍的一次相遇时间。
40×3-30=90km
变式1、甲、乙两人同时从东西两地相向而行,第一次在离东地60米
处相遇,相遇之后继续前进
到达目的地后又立刻返回,第二次相遇在离西侧20米处,求东西两地相距多
远?
60×3-20=160km
【例题3】快车从甲
站开往乙站需要6小时,慢车从乙站开往甲站需要9小时。两车分别从两站同
时开出,相向而行,在离中
点18千米处相遇。甲乙两站相距多少千米?
分析:中点相遇问题,实际上是相遇问题和追及问题的综合。
第一步:相同的时间,快车比慢车多行18×2=36千米
解:∵快车从甲站开往乙站需要6小时,慢车从乙站开往甲站需要9小时
快车与慢车的时间比是 6 : 10
∴快车与慢车的速度比是10:6=5:3
∴相遇时,快车行了全程的:5(5+3)=58
全程是 225÷58=360(千米)
变式1、快车每小时行48千米,慢车
每小时行42千米。两车分别从两站同时开出,相向而行,在
离中点18千米处相遇。甲乙两站相距多少
千米?
18×2÷(48-42)=6小时
(48+42)×6=540千米
变式2、快慢两车分别从两站同时开出,相向而行,4小
时后在离中点18千米处相遇。快车每小时
行70千米,求慢车每小时行多少千米?
18×2÷4=9千米小时
70-9=61千米小时
【例题4】甲、乙两人从相距1100米的两地相向而行,甲每分钟走65米,乙每分钟走7
5米,甲
出发4分钟后,乙才开始出发。乙带了一只狗和乙同时出发,狗以每分钟150米的速度向甲奔
去,
遇到甲后立即回头向乙奔去,遇到乙后又回头向甲奔去,直到甲、乙两人相遇时狗才停止。这只狗<
br>共奔跑了多少路程?
分析:相遇问题。关键是求相遇时间。
(1100-65×4)÷(65+75)=6小时
150×6=900千米
【例题5】甲、乙两人同时从A地到B地,乙出发3小时后甲才出发,甲走了5小时后,已超
过乙
2千米。已知甲每小时比乙多行4千米。甲、乙两人每小时各行多少千米?
分析:追及问题。要透彻理解追及距离与速度差、追及时间之间的关系。
解析:甲走了5小时,甲每小时比乙多行4千米,所以甲追回了5*4=20(千米)
已超过乙两千米, 所以最初
乙3小时走了20-2=18(千米)
所以乙每小时行:183=6(千米) 甲每小时行:6+4=10(千米)
【例题6】甲、乙、丙三人每分钟的速度分别是30米、40米、50米,甲、乙在A地同时同向出发,
丙从B地同时出发去追赶甲、乙,丙追上甲以后又经过10分钟才追上乙。求A、B两地的距离?
分析:两次追及问题。
解析
在丙追乙时:甲乙路程差
(50-40)*10=100
也就是在丙追上甲时,乙比甲快 100
所以丙追上甲时,用时 100(40-30)=10分钟
2
【例题7】上午8点零8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托
车去
追他,在离家4千米的地方追上了他,然后爸爸立即回家,到家后又立即回
头去追小明,再追上小明的时
候,离家恰好是8千米。问这时是几时几分?
解法(一).从爸爸第一次追上小明到第二次
追上这一段时间内,小明走的路程是8-4=4(千米),
而爸爸行了4+8=12(千米),因此,摩
托车与自行车的速度比是12∶4=3∶1.小明全程骑车
行8千米,爸爸来回总共行4+12=16(
千米),还因晚出发而少用8分钟,从上面算出的速度
比得知,小明骑车行8千米,爸爸如同时出发应该
骑24千米.现在少用8分钟,少骑
24-16=8(千米),因此推算出摩托车的速度是每分钟1千米
.爸爸总共骑了16千米追上小明,
需16分钟,此时小明走了
8+16=24(分钟),所以此时是8点32分.
解法(二)
这从爸爸第一次追上小明到第二追上小明,小明走了4千米,爸爸
走了三个4千
米,所以小明的速度是时是爸爸速度的倍。
爸爸从家到第一次追上小明,比小明多走了
4×(1-)=千米,共用了8分钟,所以小明的速度是
÷8=米, 从爸爸从家出发到第二次追上
小明,小明 共走了8千米,所用时间为8÷=24 分
所以现在是8点32分
解法(三)同上,先得出小明的速度是时是爸爸速度的倍. 爸爸从家到第一
次追上小明,小明走
了4千米,若爸爸与小明同时出发,则爸爸应走出12千米,但是由于爸爸晚出发8
分钟,所以只
走了4千米,所以爸爸8分钟应走8千米. 由于爸爸从出发
到第二次追上小明共走了16千
米,
所以爸爸用了16分钟,此时离小明出发共用了8+16=24分钟,
所以爸爸第二次追上小明
时是8点32分
题型二、航船问题
航船问题中顺水时:速度=船速+水速
逆水时:速度=船速-水速
【例题1】甲、乙两港相距360千米,一艘轮船从
甲港到乙港,顺水航行15小
时到达,从乙港返回甲港,逆水航行20小时到达。现在有一艘机帆船,船
速是
每小时12千米,它往返两港需要多少小时?
分析:顺流逆流的航船问题。关键是求出水流速度。
顺水速度:360÷15=24千米时
逆水速度:360÷20=18千米时
水流速度:(24-18)÷2=3千米时
它往返两港需要:360÷(12+3)+360÷(12-3)=64小时
3
题型三、火车过桥问题
1、列车行驶的总路程是“桥长加上车长”,这是解决过桥问题的关键。
2、过桥问题一般的数量关系:
路程=桥长+车长
通过时间=(桥长+车长)
车速
桥长=车速
通过时间-车长
车长=车速
通过时间-桥长
3、错车或者超车:看哪辆车经过,路程和或路程差就是哪辆车的车长
【例题1】
一列火车经过长6700米的大桥,火车长140米,每分钟行400米,
这列火车通过这座桥需要多少
分钟?
桥的长度+火车长度速度=时间
(6700+140)400=17.1分钟
【例题2】某列车通过250米长的隧道用25
秒,通过210米的铁桥用23秒,该
列车与另一列长320米,速度为每小时64.8千米的火车错车
需要多少秒?
错车即是两列火车的车头相遇到两列火车的车尾相离的过程.
解:火车过桥问题 公式:(车长+桥长)火车车速=火车过桥时间
速度为每小时行64.8千米的火车,每秒的速度为18米秒,
某列车通过250米长的
隧道用25秒,通过210米的铁桥用23秒,则 该火车车速为:(
250-210)(25-23)=20米秒
(路程差除以时间差等于火车车速).
该火车车长为:20*25-250=250(米) 或
20*23-210=250(米)
所以该列车与另一列长320米,速度为每小时行64.8千米的火车错车
时需要的时间为
(320+250)(18+20)=15(秒)
课堂练习(请做完题后在每道题空白的地方标明属于哪一类行程问题)
1、一列快车和一列慢
车,同时从甲、乙两站出发,相向而行,经过6小时相遇,
相遇后快车继续行驶3小时后到达乙站。已知
慢车每小时行45小时,甲、乙两
站相距多少千米?
由题意可知快车一共走了9个
小时,两车6小时相遇,慢车6小时的路程,快车3个小时
走完了。快车的速度是慢车的2倍。45*2
=90千米(90+45)*6=810千米
2、两辆卡车为农场送化肥,第一辆
车以每小时30千米的速度由县城开往农场,
第二辆车晚开了2小时,结果两车同时到达。已知县城到农
场的距离是180千米,
第二辆车每小时行多少千米?
解:第一辆车从县城到农场用的时间是180÷30=6小时
第二辆车从县城到农场用的时间是
6-2=4小时 第二辆车速是180÷4=45千米小时
4
3、一支队伍长450米,以每秒2米
的速度前进,一个人以每秒3米的速度从队
尾赶到队伍的最前面,然后再返回队尾,一共用了多少分钟?
从队尾向前跑的时候与队伍是同向,所以用了: 450(3-2)=450秒
从队头往后跑时与队
伍是相向而行,所以用了: 450(3+2)=90秒
一共用了:450+90=540秒=9分钟
4、一列火车长150米,每秒行19米。全车通过420米的大桥,需要多少分钟?
(150+420)÷19÷60 =570÷19÷60 =0.5分
5、船在河中航行时,顺水速度是每小时12千米,逆水速度是每小时6千米。船
速每小时多少千米?
水速每小时多少千米?
顺水速度= 船速+ 静水速度
逆水速度= 船速- 静水速度
船速=(顺水速度+逆水速度)2=(12+6)2=9 水速=12-9=3
6、一列快车从甲城开往乙城,每小时行65千米,一列客车同时从乙城开往甲城,
每小时行60千米,两列火车在距中点20千米处相遇,相遇时两车各行了多少千
米?
两列火车距中点20千米处相遇
快车多开了
20*2=40千米
用时
40(65-60)=8小时
快车走了65*8=520千米
客车走了60*8=480千米
7、A、B两地相距38千米,甲、乙两人分别从两地同时出
发,相向而行,甲每
小时行8千米,乙每小时行11千米,甲到达B地后立即返回A地,乙到达A地后立即返回B地,几小时后两人在途中相遇?相遇时距A地多远?
8、如图,A、B是圆的直径的两端,小张在
A点,小王在B
点同时出发,相向行走,他
们在距A点80米处的C点第一次相遇,接
着又在距B点60米处的
D点第二次相遇。
5
求这个圆的周长?
9、一列火车通过一座1000米的大桥要65秒,如果用同样的速度
通过一座730
米的隧道则要50秒。求这列火车前进的速度和火车的长度?
10、一只轮船在静水中的速度是每小时21千米,船从甲城开出逆水
航行了8小
时,到达相距144千米的乙城。这只轮船从乙城返回甲城需多少小时?2.3小时
11、相邻两根电线杆之间的距离是
45米,从少年宫起到育英小学门口有36根电
线杆,再往前585米是书店,求从少年宫到书店一共有
多少根电线杆?
12、解放军某部
出动80辆汽车参加工地劳动,在途中要经过一个长120米的隧
道。如果每辆汽车的长为10米,相邻
两辆汽车相隔20米,那么,车队以每分钟
500米的速度通过隧道,需要多少分钟?3分钟
6
家庭作业
1、一
辆电车从起点到终点一共要行36千米,如果每隔3千米停靠站一次,那么
从起点到终点,一共要停靠多
少次?
2、兄弟两人同时从家里出发到学校,路程是1400米,哥哥骑自行车每分钟行
2
00米,弟弟步行每分钟行80米,在行进中弟弟与刚到学校就立即返回来的哥
哥相遇。从出发到相遇,
弟弟走了多少米?相遇处距离学校有多少米?
3、小明坐在行驶的列车上,从窗外看到迎面开来的货车经
过用了6秒,已知货
车长168米;后来又从窗外看到列车通过一座180米长的桥用了12秒。货车每
小时行多少千米?
4、有两只蜗牛同时从一个等腰三角形的顶点A出发,分别沿着两腰爬
行。一只
蜗牛每分钟行2.5米,另一只蜗牛每分钟行2米,8分钟后在离C点6米处的P
点相
遇,BP的长度是多少米?
7
5、甲、乙两人同时从A、B两地相向而行,相遇
时距A地120米,相遇后,他
们继续前进,到达目的地后立即返回,在距A地150米处再次相遇,A
B两地的
距离是多少米?
6、一支部队排成1200米长的队伍行军,在队尾的通讯员要与最前
面的营长联系,
他用6分钟时间跑步追上了营长,为了回到队尾,在追上营长的地方等待了24
分钟。如果他从最前头跑步回到队尾,那么只需要多少分钟?
7、一只船在静水中每小时航行20
千米,在水流速度为每小时4千米的江中,往
返甲、乙两码头共用了12.5小时,求甲、乙两码头间的
距离。
8