利润问题公式及练习题
建筑学大学排名-情歌歌词
1、某商品按百分自20利润定价,售后又按8折出售,结果亏损了64元,问:这一商品的成<
br>本是多少元?
指导:公务员考试数学运算之利润问题
利润问题多是商业中的百分数问
题。成本、定价、利润、打折是常用的词汇,他们分别代表
什么呢?举个离子大家就非常清楚了。例如一
张桌子的买入价或做这张桌子所需要的钱,就
是成本。如果这张桌子的成本是100元,以120元的价
格售出,这120元就是这张桌子的定
价,定价与成本的差,即120-100=20,这20元就是利
润。利润就是挣的钱。利润占成本的
百分数就是利润率。商店有时减价出售商品,我们把它称为“打折”
,几折就是百分之几
十。如果某种商品打“八折”出售,就是按原价的80%出售;如果某商品打“八五
”折出售,
就是按原价的85%出售。利润问题中,还有一种利息和利率的问题,它也属于百分数应用题
。
本金是存入银行的钱。利率是银行公布的,是把本金看做单位“1”,按百分之几或千分之几
付给储户的。利息是存款到期后,除本金外,按利率付给储户的钱。本息和是本金与利息的
和。
这一问题常用的公式有:
定价=成本+利润
利润=成本×利润率
定价=成本×(1+利润率)
利润率=利润÷成本
利润的百分数=(售价-成本)÷成本×100%
售价=定价×折扣的百分数
利息=本金×利率×期数
本息和=本金×(1+利率×期数)
例1
某商品按20%的利润定价,又按八折出售,结果亏损4元钱。这件商品的成本是多少元?
A.80
B.100 C.120 D.150
【答案】B。解析:现在的价格为(1+20%)×80%=
96%,故成本为4÷(1-96%)=100元。
例2
某商品按定价出售,每个可以
获得45元的利润,现在按定价的八五折出售8个,按定价每个
减价35元出售12个,所能获得的利润
一样。这种商品每个定价多少元?
A.100 B.120 C.180 D.200
【答案】D。解析:每个减价35元出售可获得利润(45-35)×12=120元,则如按八五折出
售的话,每件商品可获得利润120÷8=15元,少获得45-15=30元,故每个定价为30÷(1-85%)=200元。
例3
一种商品,甲店进货价比乙店便宜12%,两店同样按
20%的利润定价,这样1件商品乙店比甲
店多收入24元,甲店的定价是多少元?( )
A.1000 B.1024 C.1056 D.1200
【答案】C。解析:设乙店进
货价为x元,可列方程20%x-20%×(1-12%)x=24,解得x=1000,
故甲店定价为
1000×(1-12%)×(1+20%)=1056元。
以下是几道习题供大家练习: 1、书店卖书,凡购同一种书100本以上,就按书价的90%收款,某学校到书店购买甲、乙两
种
书,其中乙书的册数是甲书册数的 ,只有甲种书得到了优惠,这时,买甲种书所付总钱数
是买乙种书所
付钱数的2倍,已知乙种书每本定价是1.5元,优惠前甲种书每本定价多少元?
A.4 B.3 C.2 D.1
2、某书店对顾客实行一项优惠措施:每
次买书200元至499.99元者优惠5%,每次买书500
元以上者(含500元)优惠10%。某
顾客到书店买了三次书,如果第一次与第二次合并一起买,
比分开买便宜13.5元;如果三次合并一起
买比三次分开买便宜39.4元。已知第一次付款是第
三次付款的 ,这位顾客第二次买了多少钱的书?
A.115 B.120 C.125 D.130
3、商店新进一批洗衣机,按30%的
利润定价,售出60%以后,打八折出售,这批洗衣机实际
利润的百分数是多少?
A.18.4 B.19.2 C.19.6 D.20
4、某商场推销一种商品,由于进货
时价格比原来降低了6.4%,使得利润率增加了8%。求这
种商品原来利润率是多少?(17%) <
br>1、现对某商品降价10%促销,为了使销售总金额不变,销售量要比原价销售时增加百分几(精确
到0.1%)
2、新华书店一天内销售两种图书,甲种书籍共卖得1560元,为了发展农业科技,
乙种书籍下乡
共卖得1350元,若按甲乙两种书籍成本分别计算,甲种书籍盈利25%,乙种书籍亏本
10%,试问该
书店这一天共盈利(或亏本)多少元,请说明你的理由.
3、某
电子有限公司向某银行申请甲乙两种贷款,共计136万元,每年须付利息16.84万元,甲种
贷款每
年的利率是12%,乙种贷款每年的利率是13%,请你求出这两种贷款的数额各是多少?
4、若一商
人进货价便谊8%,而售价保持不变,那么他的利润(按进货价而定)可由目前的x%
增加到(x+10
)%,x等于多少?
储蓄、保险、纳税
储蓄、保险、纳税是最常见的有关理财方面的数学问
题,几乎人人都会遇到,因此,我们在这
一讲举例介绍有关这方面的知识,以增强理财的自我保护意识和
处理简单财务问题的数学能
力.
1.储蓄
银行对存款人付给利息,这叫储
蓄.存入的钱叫本金.一定存期(年、月或日)内的利息对
本金的比叫利率.本金加上利息叫本利和.
利息=本金×利率×存期,
本利和=本金×(1+利率经×存期).
如果用p,r,n,i,s分别表示本金、利率、存期、利息与本利和,那么有
i=prn,s=p(1+rn).
例1
设年利率为0.0171,某人存入银行2000元,3年后得到利息多少元?本利和为多
少元?
解 i=2000×0.0171×3=102.6(元).
s=2000×(1+0.0171×3)=2102.6(元).
答
某人得到利息102.6元,本利和为2102.6元.
以上计算利息的方法叫单利法,单利法的
特点是无论存款多少年,利息都不加入本金.相
对地,如果存款年限较长,约定在每年的某月把利息加入
本金,这就是复利法,即利息再生利
息.目前我国银行存款多数实行的是单利法.不过规定存款的年限越
长利率也越高.例如,1998
年3月我国银行公布的定期储蓄人民币的年利率如表22.1所示.
用复利法计算本利和,如果设本金是p元,年利率是r,存期是n年,那么若第1年到第n
年的本利和分别是s
1
,s
2
,…,s
n
,则
s
1
=p(1+r),
s
2
=s
1
(1+r
)=p(1+r)(1+r)=p(1+r)
2
,
s
3
=s<
br>2
(1+r)=p(1+r)
2
(1+r)=p(1+r)
3
,
……,
s
n
=p(1+r)
n
.
例2 小李有20000元,想存入银行储蓄5年,可有几种储蓄方案,哪种方案获利最多?
解 按表22.1的利率计算.
(1)连续存五个1年期,则5年期满的本利和为
20000(1+0.0522)5≈25794(元).
(2)先存一个2年期,再连续存三个1年期,则5年后本利和为
20000(1+0.0558×2)·(1+0.0522)3≈25898(元).
(3)先连续存二个2年期,再存一个1年期,则5年后本利和为
20000(1+0.0558×2
)
2
·(1+0.0552)≈26003(元).
(4)先存一个3年期,再转存一个2年期,则5年后的本利和为
20000(1+0.0621×3)·(1+0.0558×2)≈26374(元).
(5)先存一个3年期,然后再连续存二个1年期,则5年后本利和为
20000(1+0.0621×3)·(1+0.0522)2≈26268(元).
(6)存一个5年期,则到期后本利和为
20000(1+0.0666×5)≈26660(元).
显然,第六种方案,获利最多,可见国家所规定的年利率已经充分考虑了你可能选择的存
款
方案,利率是合理的.
例3 小华是独生子女,他的父母为了给他支付将来上大学的学费,从小华
5岁上小学前
一年,就开始到银行存了一笔钱,设上大学学费每年为4000元,四年大学共需1600
0元,设
银行在此期间存款利率不变,为了使小华到18岁时上大学本利和能有1600
0元,他们开始到
银行存入了多少钱?(设1年、3年、5年整存整取,定期储蓄的年利率分别为5.2
2%,6.21%
和6.66%)
解 从5岁到18岁共存13年,储蓄13年得到利息
最多的方案是:连续存两个5年期后,
再存一个3年期.
设开始时,存入银行x元,那么第一个5年到期时的本利和为
x+x·0.0666×5=x(1+0.0666×5).
利用上述本利和为本金,再存一个5年期,等到第二个5年期满时,则本利和为
x(1+0.0666×5)+x(1+0.0666×5)·0.0666×5
=x(1+0.0666×5)
2
.
利用这个本利和,存一个3年定期
,到期时本利和为x(1+0.0666×5)
2
(1+0.0621×3).这
个数
应等于16000元,即
x(1+0.0666×5)
2
·(1+0.0621×3)=16000,
所以 1.777×1.186x=16000, 所以 x≈7594(元).
答 开始时存入7594元.
2.保险
保险是现代社会必不可少的一种生活、生命
和财产保护的金融事业.例如,火灾保险就是
由于火灾所引起损失的保险,人寿保险是由于人身意外伤害
或养老的保险,等等.下面举两个
简单的实例.
例4
假设一个小城镇过去10年中,发生火灾情况如表22.2所示.
试问:(1)设想平均每年在1000家中烧掉几家?
(2)如果保户投保30万元的火灾保险,最低限度要交多少保险费保险公司才不亏本?
解
(1)因为
1+0+1+2+0+2+1+2+0+2=11(家),
365+371+385+395+412+418+430+435+440+445=4096(家).
11÷4096≈0.0026.
(2)300000×0.0026=780(元).
答(1)每年在1000家中,大约烧掉2.6家.
(2)投保30万元的保险费,至少需交780元的保险费.
例5 财产保险是常见的保险.假定
A种财产保险是每投保1000元财产,要交3元保险
费,保险期为1年,期满后不退保险费,续保需重
新交费.B种财产保险是按储蓄方式,每
1000元财产保险交储蓄金25元,保险一年.期满后不论是
否得到赔款均全额退还储蓄金,以
利息作为保险费.今有兄弟二人,哥哥投保8万元A种保险一年,弟弟
投保8万元B种保险
一年.试问兄弟二人谁投的保险更合算些?(假定定期存款1年期利率为5.22%
)
解 哥哥投保8万元A种财产保险,需交保险费
80000÷1000×3=80×3=240(元).
弟弟投保8万元B种财产保险,按每1000元交25元保险储蓄金算,共交
80000÷1000×25=2000(元),
而2000元一年的利息为
2000×0.0522=104.4(元).
兄弟二人相比较,弟弟少花了保险费约
240-104.4=135.60(元).
因此,弟弟投的保险更合算些.
3.纳税
纳税是每个公民的义务,对于每个工作人员来说,除了工资部分按国家规定纳税外,个人
劳务增收也应纳税.现行劳务报酬纳税办法有三种:
(1)每次取得劳务报酬不超过1000元的(包括1000元),预扣率为3%,全额计税.
(
2)每次取得劳务报酬1000元以上、4000元以下,减除费用800元后的余额,依照20%
的比
例税率,计算应纳税额.
(3)每次取得劳务报酬4000元以上的,减除20%的费用后,依照
20%的比例税率,计算
应纳税额.
每次取得劳务报酬超过20000元的(暂略).
由(1),(2),(3)的规定,我们如果设个人每次劳务报酬为x元,y为相应
的纳税金额(元),
那么,我们可以写出关于劳务报酬纳税的分段函数:
例6 小王和小
张两人一次共取得劳务报酬10000元,已知小王的报酬是小张的2倍多,
两人共缴纳个人所得税15
60元,问小王和小张各得劳务报酬多少元?
解 根据劳务报酬所得税计算方法(见函数①),从
已知条件分析可知小王的收入超过4000
元,而小张的收入在1000~4000之间,如果设小王的
收入为x元,小张的收入为y元,则有
方程组:
由①得y=10000-x,将之代入②得
x(1-20%)20%+(10000-x-800)20%=1560,
化简、整理得 0.16x-0.2x+1840=1560,
所以
0.04x=280,x=7000(元).
则 y=10000-7000=3000(元).
答 小王收入7000元,小张收入3000元.
例7
如果对写文章、出版图书所获稿费的纳税计算方法是
其中y(x)表示稿费为x元应缴纳的税额.
那么若小红的爸爸取得一笔稿费,缴纳个人所得税后,得到6216元,问这笔稿费是多少
元?
解 设这笔稿费为x元,由于x>4000,所以,根据相应的纳税规定,有方程
x(1-20%)· 20%×(1-30%)=x-6216,
化简、整理得
0.112x=x-6216,
所以 0.888x=6216,
所以 x=7000(元).
答 这笔稿费是7000元.
练习二十二
1.按下列三种方法,将100元存入银行,10年后的本利和各是多少?(设1年期、3年
期、5年期
的年利率分别为5.22%,6.21%,6.66%保持不变)
(1)定期1年,每存满1年,将本利和自动转存下一年,共续存10年;
(2)先连续存三个3年期,9年后将本利和转存1年期,合计共存10年;
(3)连续存二个5年期.
2.李光购买了25000元某公司5年期的债券,5年后得到本利和
为40000元,问这种债
券的年利率是多少?
3.王芳取得一笔稿费,缴纳个人所得税后,得到2580元,问这笔稿费是多少元?
4.把本金5000元存入银行,年利率为0.0522,几年后本利和为6566元(单利法)?