(完整word)新人教版六年级下册数学知识点,推荐文档
狗的说明文-国旗下的讲话稿
一、负数
1、负数的由来:
2
为了表示相反意义的两个量(如盈利亏损、收入支出……),仅有学过的0,1 ,3.4,
5
……
是远远不够的。所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负
2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。
若一个数小于0,则称它是一个负数。负数有无数个,其中有(负整数,负分数和负小数)
2
负数的写法:数字前面加负号“—”号,不可以省略.例如:-2,-5.33,-45,-
5
3、正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数.
若一个数大于0,则称它是一个正数。正数有无数个,其中有(正整数,正分数和正小数)
2
正数的写法:数字前面可以加正号“+”号,也可以省略不写。例如:+2,5.33,+4
5,
5
4、 0 既不是正数,也不是负数,它是正、负数的分界限
负数都小于0,正数都大于0,负数都比正数小,正数都比负数大
5、数轴:
负
负
●
正
分界
●
正
0
负数
0 正数
左边 < 右边
6、比较两数的大小:
①利用数轴: 负数<0<正数 或
左边<右边
②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。
负数之间比较大小,数字大的反而小,数字小的反而大.
1111
3
>
6
-
3
<-
6
1
二、百分数(二)
(一)、折扣和成数
1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。
86.565
几折就是十分之几,也就是百分之几十。例如八折=
10
=80﹪,六折五=
10
=
100
=65﹪
解决打折的问题,关键是先将打的折数转化为百分数或分数,
然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答
商品现在打八折 :现在的售价是原价的80﹪
商品现在打六折五:现在的售价是原价的65﹪
2、成数:
18.585
几成就是十分之几,也就是百分之几十。例如一成=
10
=10﹪,八成五=
10
=
100
=80﹪
解决成数的问题,关键是先将成数转化为百分数或分数,
然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答
这次衣服的进价增加一成 :这次衣服的进价比原来的进价增加10﹪
今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪
(二)、税率和利率
1、税率
(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的
一部分缴
纳给国家。
(2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的
税款发展经济、科技、
教育、文化和国防安全等事业。
(3)应纳税额:缴纳的税款叫做应纳税额。
(4)税率:应纳税额与各种收入的比率叫做税率。
(5)应纳税额的计算方法:
应纳税额=总收入×税率 收入额=应纳税额÷税率
2、利率
(1)存款分为活期、整存整取和零存整取等方法。
(2)储蓄的意义:人们常常把暂时不用
的钱存入银行或信用社,储蓄起来,这样不仅可以支
援国家建设,也使得个人用钱更加安全和有计划,还
可以增加一些收入。
(3)本金:存入银行的钱叫做本金。
(4)利息:取款时银行多支付的钱叫做利息。
(5)利率:利息与本金的比值叫做利率。
2
(6)利息的计算公式:利息=本金×利率×时间
利率=利息÷时间÷本金×100%
(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:
税后利息=利息-
利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)
税后利息=本金×利率×时间×(1-利息税率)
购物策略:
估计费用:根据实际的问题,选择合理的估算策略,进行估算。
购物策略:根据实际需要,对
常见的几种优惠策略加以分析和比较,并能够最终选择最为优
惠的方案
学后反思:做事情运用策略的好处
三、圆柱和圆锥
3
(一)、圆柱
1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。
圆柱也可以由长方形卷曲而得到。(两种方式:1.以长方形的长为底面周长,
宽为高;2.以
长方形的宽为底面周长,长为高。其中,第一种方式得到的圆柱体
体积较大。)
2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的
3、圆柱的特征:
(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征 :圆柱有无数条高
4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增 =2πr²
②
竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的
长是圆柱的高,宽是圆柱
的底面直径,表面积增加两个长方形的面积,即S
增=4rh
5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,展开图形为正方形
②不沿着高展开,展开图形是平行四边形或不规则图形
③无论怎么展开都得不到梯形
6、圆柱的相关计算公式:底面积 :S底=πr²
底面周长:C底=πd=2πr
侧面积 :S侧=2πrh
表面积 :S表=2S底+S侧=2πr²+2πrh
体积
:V柱=πr²h
考试常见题型:①已知圆柱的底面积和高,
求圆柱的侧面积,表面积,体积,底面周长
②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积
③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积
④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积
⑤已知圆柱的侧面积和高,
求圆柱的底面半径,表面积,体积,底面积
以上几种常见题型的解题方法,通常是求出圆柱的底面半径
和高,再根据圆柱的相关计算公
式进行计算
无盖水桶的表面积 =侧面积+一个底面积
油桶的表面积 =侧面积+两个底面积
4
烟囱通风管的表面积=侧面积
只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装
侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池
侧面积+两个底面积:油桶、米桶、罐桶类
(二)、圆锥
1、圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的
圆锥也可以由扇形卷曲而得到
2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高
3、圆锥的特征:
(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面。
(3)高的特征 :圆锥有一条高。
4、圆柱的切割:①横切:切面是圆
②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆
锥的高,底是圆锥的底面直径
,面积增加两个等腰三角形的面积,
即S增=2rh
5、圆锥的相关计算公式:底面积
:S底=πr²
底面周长:C底=πd=2πr
1
体积
:V锥=
3
πr²h
考试常见题型:①已知圆锥的底面积和高,求体积,底面周长
②已知圆锥的底面周长和高,求圆锥的体积,底面积
③已知圆锥的底面周长和体积,求圆锥的高,底面积
以上几种常见题型的解题方法,通常是求出圆锥的
底面半径和高,再根据圆柱的相关计算公
式进行计算
(三)、圆柱和圆锥的关系
1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。
3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
2
4、圆柱与圆锥等底等高 ,体积相差
3
Sh
题型总结
5
①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积
分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化
分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、
体积之比
②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)
③横截面的问题
④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水
容积的底面积乘
以上升的高度)容积是圆柱或长方体,正方体
⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的
问
1
题,注意不要乘以
3
(四)、典型题:
1、一个圆柱的侧面展开是一个正方形,它的高是底面直径的π倍,
即h=C=πd,它的侧面积是S侧=h²
2、圆柱的底面半径扩大2倍,高不变,表面积扩大2倍,体积扩大4倍。
3、圆柱的底面半径扩大2倍,高也扩大2倍,表面积扩大4倍,体积扩大8倍。
4、圆柱的底面半径扩大3倍,高缩小3倍,表面积不变,体积扩大3倍。
5、一个圆柱和它等底等高的圆锥体积之和是48立方厘米,这个圆柱的体积是(
)立方厘
米,圆锥的体积是( )立方厘米
圆锥和它等底等高的圆柱体积之比是1
:3,圆柱占1份,圆锥占3份,一共4份,题目中
说了4份的和一共是48立方厘米。
圆锥占了4份中的1份,圆柱占了4份中的3份
1
V锥:48÷4=12(立方厘米)
或 48×
4
=12(立方厘米)
3
V柱:48÷4=12(立方厘米) 12×3=36(立方厘米) 或
48×
4
=36(立方厘米)
6、一个圆柱和它等底等高的圆锥体积之差是24立方分米,这个圆柱的体积是(
)立方
分米,圆锥的体积是( )立方分米。
圆锥和它等底等高的圆柱体积之比是1 :
3,圆柱占1份,圆锥占3份,1份和3份相差了
2份,题目中说了相差24立方分米,2份就是24立
方分米
圆锥占了2份中的1份,圆柱占了2份中的3份
1
V锥:24÷2=12(立方分米) 或24×
2
=12(立方分米)
6
3
V柱:24÷2=12(立方分米) 12×3=36(立方分米) 或
24×
2
=36(立方分米)
7、一个圆柱和一个圆锥,体积相等,底面积也相等,圆柱的高是2厘米,圆锥的高是(
)
厘米。
V柱=V锥
V柱=V锥
11
S柱底h柱= S锥底h锥
S柱底h柱= S锥底h锥
33
11
h柱= h锥
S柱底= S锥底
33
11
2= h锥
4 = S锥底
33
11
h锥= 2÷
S锥底= 4÷
33
h锥=6
S锥底=12
8、一个圆柱和一个圆锥体积相等,高也相等,圆柱的底面积是4平方分米,圆锥的底面积
是(
)平方分米。
9、一个圆锥和一个圆柱的底面积相等,体积的比是1:6。如果圆锥的高是3.6厘米
,圆柱
的高是( )厘米,如果圆柱的高是3.6厘米,圆锥的高是( )厘米。
1
3
S锥底h锥
1
3
h锥
1
1
3
S锥底h锥
1
1
1
3
h锥
1
S柱底h柱 6
S柱底h柱 6
h柱 6
h柱 6
11
h柱×1 =
3
×h锥×6 h柱 =
3
×h锥×6
11
h柱 =
3
×3.6×6
h柱÷
3
÷6 = h锥
1
h柱 = 7.2
3.6÷
3
÷6 = h锥
10、一个圆柱体,把它的高截短3厘米,它的底面
积减少94.2平方厘米,这个圆柱的体积
减少了( )立方厘米。πr²
C=S侧÷h r=C÷π÷2 V=πr²h
7
=94.2÷3 =31.4÷3.14÷2
=3.14×5×3
=31.4(厘米) =5(厘米)
=235.5(立方厘米)
四、比例
1、比的意义
(1)两个数相除又叫做两个数的比
(2)“:”是比号,读作“比”。比号前面的数叫做比
的前项,比号后面的数叫做比的后项。比
的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相
当于分母,比值相当于分数
值。
2、比的基本性质:比的前项和后项同时乘或者除以相同的数
(0除外),比值不变,这叫做
比的基本性质。
3、求比值和化简比:求比值的方法:用比的
前项除以后项,它的结果是一个数值可以是整数,
也可以是小数或分数。
根据比的基本性质可
以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项
是互质的数。
4、按比例分配:
在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法
通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
5、比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
6、比例的基本性质:在比例里,两个外项的积
等于两个两个内项的积。这叫做比例的基本性
质。
7、比和比例的区别
(1)比表
示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它
有四项(即两个内项和
两个外项)。
8
(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。
8、成正
比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相
对应的两个数的比值
(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正
y
比例关系。用字母表示
=k(一定)
x
9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如
果这两种量中相
对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用
字
母表示x×y=k(一定)
10、判断两种量成正比例还是成反比例的方法:
关
键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比
例;如果积一定
,就成反比例。
11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
12、比例尺的分类
(1)数值比例尺和线段比例尺
(2)缩小比例尺和放大比例尺
13、图上距离:实际距离=比例尺 或
图上距离
=比例尺
实际距离
实际距离×比例尺=图上距离
图上距离÷比例尺=实际距离
14、应用比例尺画图的步骤:
(1)写出图的名称、
(2)确定比例尺;
(3)根据比例尺求出图上距离;(4)画图(画出单位长度)
(5)标出实际距离,写清地点名称(6)标出比例尺
15、图形的放大与缩小:形状相同,大小不同。
16、用比例解决问题: 根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,
并根据正
、反比例关系式列出相应的方程并求解。
17、常见的数量关系式:(成正比例或成反比例)
单价×数量=总价 单产量×数量=总产量 速度×时间=路程 工效×工作时间=工作总量
总价总产量路程工作总量
=数量 =数量 =时间
=工作时间
单价单产量速度工作效率
9
总价总产量路程工作总量
=单价 =单产量 =速度
=工作效率
数量数量时间工作时间
18、已知图上距离和实际距离可以求比例尺。已知比例尺
和图上距离可以求实际距离。已知
比例尺和实际距离可以求图上距离。计算时图距和实距单位必须统一。
19、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?
答:每天播种的公顷数×天数=播种的总公顷数
已知播种的总公顷数一定,就是每天播
种的公顷数和要用的天数的积是一定的,所以
每天播种的公顷数和要用的天数成反比例。
20、判断下面各题的两个量是不是成比例,如果成比例,成什么比例?
(1)订阅《中国少年报》的份数和钱数。
因为
钱数
=
每份的钱数(一定)
订阅《中国少年报》的份数
所以,订阅《中国少年报》的份数和钱数成正比例。
(2)三角形的底一定,它的面积和高。
因为
三角形的面积
1
=
2
(一定)
高
所以,它的面积和高成正比例。
(3)图上距离一定,实际距离和比例尺。
因为,实际距离×比例尺=图上距离(一定)
所以,实际距离和比例尺成反比例。
(4)一条绳子的长度一定,剪去的部分和剩下的部分。
因为,剪去的部分和剩下的部分不存在比值或积一定的关系,
所以,剪去的部分和剩下的部分不成比例。
(5)圆的面积和它的半径不成正比例,因为圆的
面积和它的半径的比值不一定,所以圆
的面积和它的半径不成正比例。
自行车里的数学:
前齿轮转数×前齿轮齿数=后齿轮转数×后齿轮齿数
蹬一圈走的路程=车轮周长×(蹬一圈,后轮转动的圈数)
蹬一圈走的路程=车轮周长×(前齿轮齿数:后齿轮齿数)
48:28≈1.71
48:24=2 48:20=2.4 48:18≈2.67 48:16=3
48:14≈3.43
40:28≈1.43 40:24≈1.67 40:20=2
40:18≈2.22 40:16=2.5 40:14≈2.86
10
前、后齿轮齿数相差大的,比值就大,这种组合走的就远,因而车速快,但骑车人较费力
前、后齿轮齿数相差小的,比值就小,这种组合走的就近,因而车速慢,但骑车人较省力
自行车跑的快慢与两个条件有关:1、前后齿轮齿数的比值。2、车轮的大小(合理)
五、 数学广角—鸽巢问题
1、鸽巣原理是一个重要而又基本的组合原理, 在解决数学问题时有非常重要的作用
①什么是鸽巣原理, 先从一个简单的例子入手, 把3个苹果放在2个盒子里,
共有四种不同的
放法, 如下表
放法
1
2
3
4
盒子1
3
2
1
0
盒子2
0
1
2
3
无论哪一种放法,
都可以说“必有一个盒子放了两个或两个以上的苹果”。 这个结论是
在“任意放法”的情况下,
得出的一个“必然结果”。
类似的, 如果有5只鸽子飞进四个鸽笼里,
那么一定有一个鸽笼飞进了2只或2只以上
的鸽子
如果有6封信, 任意投入5个信箱里,
那么一定有一个信箱至少有2封信
我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,
把“盒子”、“鸽笼”、“信
箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式
②利用公式进行解题: 物体个数÷鸽巣个数=商……余数
至少个数=商+1
2、摸2个同色球计算方法。
①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。
物体数=颜色数×(至少数-1)+1
②极端思想:
用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都
11
能保证一定有两个球是同色的。
③公式:
两种颜色:2+1=3(个)
三种颜色:3+1=4(个)
四种颜色:4+1=5(个)
常见乘法计算(敏感数字) :25×4=100 125×8=1000
加法交换律简算例子 加法结合律简算例子 乘法交换律简算例子 乘法结合律简算例子
2121516
0.875+
3
+
8
3
+
4
+0.8 0.4×33×
23×0.375×
23
72121425316
=
8
+
3
+
8
=
3
+
4
+
5
=
5
×33×
2
=23×
8
×
3
71221422316
=
8
+
8
+
3
=
3
+(
4
+
5
) =
5
× ×33 =23
×(
58
×
3
)
22
=1+
3
=
3
+1 =1×3 =23×2
含加法交换律与结合律 含乘法交换律与结合律 数字换减法式 数字换加法式
2112916759
0.875+
3
+
8
+
3
0.375×
7
×
3
×
35× 101×
293610
721132916759
=
8
+
3
+
8
+
3
=
8
×
7
×
3
× = (36-1) × =
(100+1) ×
293610
799
=
8
+
8
+
3
+
3
=
8
×
3
×
7
× =36×
-1× =100× +1×
2936361010
7
=
(
8
+
8
)+ (
3
+
3
)
= (
8
×
3
)×(
7
×
29
)
=5-
36
=1+
10
=1+1
=2×1
乘法分配律提取式 乘法分配律提取式 乘法分配律(添项) 乘法分配律(添项)
9955
101×0.9-
10
×1
95.5÷1.6-15.5÷1.6 101×0.9-
10
52×
8
+29×
8
-0.625
9999555
=101× - ×1 =(95.5-15.5)÷1.6
=101× - =52× +29×
1010101088
-
8
9999555
=101× -1×
=80÷1.6 =101× -1× =52× +29×
-1×
1
995
=(101-1) ×
=800÷16 =(101-1) × =(52+29-1)×
10108
995
=100×
=100× =80×
10108
减法的性质简算例子 减法的性质简算例子 减法的性质简算例子 数字换乘法式
53727
18-
8
-0.375
1
4
-
16
-0.75 12
5
-(
16
+0.4) 0.56×125
12
5
3
373272
=18-
8
-
8
=1
4
-
16
-
4
=12
5
-(
16
+
5
) =0.7×0.8×125
5
3
337227
=18-(
8
+
8
) =1
4
-
4
-
16
=12
5
-
5
-
16
=0.7×(0.8×125)
77
=18-1
=1-
16
=12-
16
=0.7×100
除法的性质简算例子 除法的性质简算例子 除法的性质简算例子
数字换乘法式
3200÷2.5÷0.4 2700÷2.5÷2.7
5900÷(2.5×5.9) 33333×33333
=3200÷(2.5×0.4) =2700÷2.7÷2.5
=5900÷5.9÷2.5 =11111×3×33333
=3200÷1
=1000÷2.5 =1000÷2.5
=11111×99999
同级运算中,第一个数不能动,后面的数可以带着符号搬家
=11111×(100000-1)
272271
1
3
+
16
-
3
250÷0.8×0.4
1
3
-
16
+
3
29×0.25÷0.29
227217
=1
3
-
3
+
16
=250×0.4÷0.8 =1
3
+
3
-
16
=29÷0.29×0.25
77
=1+
16
=100÷0.8
=2-
16
=100×0.25
解方程方法一:消项(如果消+3,方程两边就同时-3 ;如果消×3,方程两边就同时÷3)
1:把方程里的“括号”全部去掉,两种去括号的方法任选其一
2:如果两边都有 几
, 要先消去其中一边的 几
(如果有“-几”,就把“-几”消去,如果没有“-几”,就把较小的消去掉)
3:消去
“-几”, 消去“÷”
4:把这边的数字全部消掉,先消“+ -” 再消“÷”
最后消“×”
(注意:无论解到哪一步,数字+几 都要写成 几+数字)
解方程方法二:移项(+3移到另一边就变成-3,×3移到另一边就变成÷3)
1:把方程里的“括号”全部去掉,两种去括号的方法任选其一
2:如果两边都有 几
,就把其中一边的 几 移到另一边
(如果有“-几”,就把“-几”移到另一边。如果没有“-几”,就把较小的移到另一边)
3:把“-几”移到另一边,把 “÷”移到另一边”
4:把这边的数字全部移到另一边,先移“+ -” 再移“÷” 最后移“×”
(注意:无论解到哪一步,数字+几 都要写成 几+数字)
长度单位换算
km m dm cm mm
1千米=1000米
1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
13
面积单位换算 km²
m² dm² cm² mm²
1平方千米=100公顷
1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算 L
mL m³ dm³ cm³
1立方米=1000立方分米
1立方分米=1000立方厘米 1升=1000毫升
1立方米=1000升
1立方分米=1升 1立方厘米=1毫升
质量单位换算
t kɡ ɡ
1吨=1000 千克 1千克=1000克 1千克=1公斤
人民币单位换算
1元=10角 1角=10分
1元=100分
时间单位换算 h min
s
1世纪=100年 1年=12月 大月(31天)有:135781012月
小月(30天)的有:46911月
平年2月28天, 闰年2月29天 平年全年365天,
闰年全年366天
1日=24小时 1时=60分 1分=60秒 1时=3600秒
+ - × ÷ = ( ) ² ³ πr²
14