人教版数学六年级下册鸽巢原理说课稿

巡山小妖精
734次浏览
2020年12月01日 11:16
最佳经验
本文由作者推荐

如何预防妊娠纹-注册海外公司

2020年12月1日发(作者:阙生)



基于标准的说课设计
抽屉原理》
单 位:中牟县青年路小学
姓 名:梁 葵 敏



《抽屉原理》说课设计

抽屉原理

是人教版新课标实验教科书六年级下册第五单元 数学
广角的第一课时,当确定讲这节课时,我就一直在想:怎样把这 么抽象的原
理让学生能更好地去理解,去掌握呢?
【解读课标】
:课标是这样描述的:在观察、实验、猜想、验证 的过
程中,发展合情推理能力,能进行有条理的思考,能比较清 楚的表达
自己的思考和结果。 经历数与代数的抽象、 运算与建模 等过程。
【研读教材】
:在数学问题中,有一类与 “存在性 ”有关的问题,
如任意 367 名学生中,一定存在两名学生, 他们在同一天过生日。
在这类问题中,只需要确定某个物体(或某个人)的存在就可以 了,
并不需要指出是哪个物体(或哪个人),也不需要说明通过 什么方式
把这个存在的物体(或人)找出来。这类问题依据的理 论,我们称之
为 “抽屉原理 ”。
本课时的教学内容为例 1 和例 2。
例 1 介绍了较简单的 “抽屉问题 ”:只要物体数比抽屉数多,
总有一个抽屉里至少放进 2 个物体。它意图让学生发现这样的一 种存
在现象:不管怎样放,总有一个文具盒里至少放进 2 支铅笔。 例 1
呈现的是 2 种思维方法: 一是枚举法, 罗列了摆放的所有情 况。二
是假设法,用平均分的方法直接考虑 “至少 ”的情况。通过



例 1 两个层次的探究,让学生理解 “平均分 ”的方法能保证 “至少 的情
况,能用这种方法在简单的具体问题中解释证明。
例 2 在例 1 的基础上说明:只要物体数比抽屉数多,总有一 个抽屉里至
少放进(商 +1 )个物体。
因此我认为例 2 的目的是使学生进一步理解 “尽量平均分 ”, 能用有
余数的除法算式表示思维的过程。
【了解学生】
:
课前我对学生做了口头问题调查:
1
、把
3
个苹果放进
2
个盘子里,至少有几个苹果放进同一个盘里?
2、公交车上剩 4 个座位,上来 3 个人,至少有几个人坐在同 一个座位
上?
3
、一年有
12
个月,
13
个同学,至少有几个同学在同一个月出生? 对于这
3

问题,学生的回答有说
1
个的。
2
个的,还有说
0
的, 我也把这些问题提给老师
问:为什么结论不是:不管怎么放,总有一 个盘子里至少放进
2
个苹果呢? ⋯⋯
..

看来要解决抽屉原理的问题, 确实存在着不小的困难。 基于以上的调查和分析, 我
认为《抽屉原理》 的问题就是让学生经历数学思维和数学建模的过程, 从而获得解
决问 题的思想方法。
因此,我确定经历抽屉原理的探究过程, 初步了解抽屉原理是本 节课的重难
点,相关计算及说理过程是本节课的重点。




概念体系
会用“平均
分”求至少
数。
知识地位 学生经验 行为动词 行为条件
通过摆一
行为程度
重点 没有 叙述
摆、猜一猜、
试一试。
会用
在教师的引
总结规律 重点 没有 说出
导下
正确

会用“抽屉原
理”解决实际
问题。

通过观察,
总结、验证
重难点 没有 正确
【评价设计】
1
、对于目标一,我采用的是纸笔性评价和表现性评价。
2
、对于目标二,我采用的是论述性评价和表现性评价。
3
、对于目标三,我采用的是表现性评价
【学习流程】
一创设情景,引入新课。
师:同学们听说过鲁滨逊吗?想不想听听他的故事?
话说鲁宾逊完全不顾父愿, 甚至违抗父命, 也全然不听母亲的恳求和朋友们 的劝阻,一意孤
行开始了他的冒险之旅。 一天拂晓, 当他所乘坐的正驶向加那利 群岛时,被一艘土耳其海盗船袭
击, 所有船员全部被俘。 鲁宾逊被海盗船长作为 自己的战利品留了下来,成了船长的奴隶。这一
日,海盗们没有出海,懒洋洋的
在岸上休息, 船长命令鲁宾逊给海盗们传授些文明人的知识, 让海盗们变得像鲁 宾逊一样富有智
慧。 鲁宾逊灵机一动想到了一个办法, 他找来
3
根小棒和
2
个杯 子:



二.合作探究。建立模型
任务一:
1
、探究把
3
根小棒放入
2
个杯子不管怎样放,总有一个杯子至少放进 几根小棒?
师:把
3
根小棒放入
2
个杯子可以怎样放
?
有几种放法?

1
)小组讨论
(2)
学生展示

3
)引导学生观察得出结论

4
根小棒放进
3
个杯子里,不管怎么放总有一个杯子至少放进
2
根小棒。
2
、探究把
4
根小棒都放进
3
个杯子里不管怎样放,总有一个杯子至少放进几 根小棒?

1
)小组讨论
(2)
学生展示

3
)引导学生得出结论

4
根小棒放进
3
个杯子里,不管怎么放总有一个杯子至少放进
2
根小棒。 任务二:
1
、猜
想、验证把
6
根小棒放到
5
个杯子里不管怎样放,总有一个杯子 至少放进几根小棒?引出平均分。
问题
1:
如果把
6
根小棒放到
5
个杯子里,总有一个杯子至少有几根小棒呢? 能不能摆出一种
放法就有结果了?
问题
2
:为什么只用到平均分这一种摆法就知道结果呢? 引导学生用算式表示(教师板书)
6
÷
5= 1
⋯⋯
1

得出结论:把
6
根小棒放到
5
个杯子里,总有一个杯子至少有
2
根小棒。
2
、练习

1
)把
7
根小棒放到
6
个杯子里,总有一个杯子至少有几根小棒吗?为什 么?

2
)把
8
根小棒放进
7
个杯子里,总有一个杯子至少有几根小棒吗?为什 么?

3
)把
9
块根小棒进
8
个杯子里,把
10
根小棒放进
9
个杯子里,⋯⋯ 任务三 :你们发现了
什么规律?
最后引导学生得出结论:只要小棒的数量比杯子的数量多
总有一个杯子至少有
2
根小棒。
师:刚才我们研究的都是小棒的数量比杯子的数量多
1
的问题,如果小棒的 数量比杯子的数量

2
、多
3
、多
4
又会出现什么结果呢?
任务四:
1
、研究把
5
根小棒放进
3
个杯子里,会有什么结果?

1
)把
5
根小棒放进
3
个杯子里,不管怎么放,总有一个杯子至少有几根 小棒。为什么?
(学生说算式的时候,教师随机板书,
5
÷
2=2
⋯⋯
1
,教师演示 课件。)

2
)如果把
7
根小棒放进
2
个杯子里,把
13
根小棒放进
3
个杯子里,不管 怎么放,总有一
个杯子里至少放进几根小棒?为什么?(小组合作)⋯⋯
.

1
,不管怎么放,



(3)
请大家认真观察,至少数和除法算式之间有什么关系?

4
)引导学生总结出抽屉原理的一般规律并揭示课题。(教师随机板书)
只要物体的数量比抽屉的数量多, 不管怎么放, 总有一个抽屉至少放进 “商
+1
”个物体。这
就是有名的“抽屉原理” 。 又称“鸽笼原理”,最先是由
19
世纪 的德国数学家狄利克雷提出来
的,所以又称 “狄里克雷原理 ”,也称作“鸽巢原理 ”。
2
、练习:
例如,
7
只鸽子飞回
5
个鸽舍,至少有两只鸽子飞进同一个鸽舍?为什么? (结合课件演示)
三.应用原理,解决问题。

一)
.
巩固应用一——扑克牌游戏
16
世纪的海盗们哪能摸得清什么是抽屉原理呢?一听鲁兵逊讲原理二字便 昏头涨脑,不知什么
时候早在下面玩起了扑克牌。这时,鲁宾逊灵机一动,将大 家正玩的扑克牌中的大小王拿掉,说:
每人抽五张牌,不管怎么抽取,至少有两 张是同一花色的牌, 你们相信吗?说着, 给坐在旁边的
海盗甲、 海盗乙每人任意 抽取了
5
张牌。 “如果有一个人手里的牌都不是同一花色,任由船长处
置;如果 有一个人手里至少有
2
张花色相同的牌,请船长允许我回到故乡吧。 ”船长眼珠 一转,
同意了鲁宾逊的要求。
师:那么事实是不是这样呢?同学们相信鲁宾逊的话吗?
教师发扑克牌,学生回答。

二)
.
巩固应用二——分宝
1
鲁宾逊虽然证实了自己是正确的,可是狡猾的船长并没有答应他
的要求,放 他回家。鲁宾逊只好跟着海盗首领到处掠夺杀戮。
有一次,他们获得了很多宝贝,海盗首领非常高兴,对手下
8
个小海盗说, 这些宝贝都给你们
了, 你们自己处理吧, 没想到小海盗平时都抢惯了, 一拥而上, 有人拿得很多, 有人很少, 甚
至有人一件宝贝也没拿到, 看到小海盗们乱哄哄的 样子,海盗首领非常生气,就想惩罚一下那些贪
婪的海盗,机会终于来了!有一 次:海盗们又获得了
73
件宝贝,海盗首领又叫
8
个小海盗自己
分。且规定:
1
、 必须分完。
2
、若某人拿
10
件或
10
件以上的宝贝,说明他是个过分贪婪的
人, 就把他扔进大海喂鲨鱼。
师:海盗们是否都能逃过这一劫呢?小组讨论后派代表说说想法,其他同学 可以补充。无论怎
样分,总有一个海盗至少会拿到
10
件,这个海盗怎么办呢? 学生自由谈看法。
师:正在海盗们担心的时候,事情有了转机,聪明的鲁宾逊趁着天黑偷偷地 把一件宝贝扔进大
海,现在只剩下
72
件宝贝,大家都平安无事。
(三)
.
巩固应用三——分宝
2
师:海盗们终于逃过一劫,海盗首领回到自己屋里,闷闷不
乐,夫人问他为 什么不开心,海盗首领如实相告,夫人说是不是有人把一件宝贝扔到海里去了, 海
盗首领如梦方醒, 决心下一次不再上当, 又是在一个风急天黑的夜晚: 海盗们 获得了
79
件宝
贝,首领还是要
8
个小海盗自己分,规则不变,还警告,
79
件宝 贝已数得清清楚楚,谁要是作
弊,也要受到惩罚。
师:小海盗们大惊失色,心想这下可能真的逃不过去了,只有聪明的鲁宾逊 镇定自若,站出来
对海盗首领说, 既然宝贝比上次增加了
6
件,能不能把限定的
10
件提高
1
件?海盗首领心想,宝



贝增加这么多,而限定只提高
1
件,还是肯 定有人会受到惩罚, 就同意了鲁宾逊的请求。 你认为
首领的想法对吗?说说你是 怎样想的。
学生先小组讨论,然后再叫几个学生来说说是怎样想的。老师再对学生的思 路进行梳理。
师小结:以上我们所碰到的问题是什么问题?同学们找到被分的物品数和抽 屉数了吗?
四、全课总结
师:靠着鲁宾逊的聪明才智,事情终于风平浪静,在以后的日子里鲁宾逊用 自己的智慧赢得了海盗首领的
信任。同学们,故事就讲到这里通过今天的学习,
你有什么收获?

板书设计 抽屉原理
小棒 杯子
总有一个杯子至少有“商
3 2 2
4 3 2
6
÷
5 = 1
⋯ ⋯
1 2
100 99 2
5
÷
3 = 1
⋯⋯
2 2
7
÷
4 = 1
⋯⋯
3 2
13
÷
4 = 3
⋯⋯
1 4

+ 1

雅思口语考试时间-小兵传奇续集


100个简单的科技小制作-七星不靠


教师教育格言-养肝护肝喝什么茶最好


chanel香水-particulars


表演什么节目好-qq信箱


电视剧爱情公寓-微波炉做


江苏高考分数线2019-感受大自然的作文


趣味测试游戏-热血传奇游戏名字