人教版数学六年级下册总复习比和比例教学设计
偁怎么读-含羞草为什么会合拢
总复习
数与代数之——比和比例整理复习
复习内容:人教版教科书第94、95页。
复习目标:
1.通过复习使学生进一步
掌握比和比例的有关知识,重组知识结构,构
建知识网络,渗透事物间相互联系的辨证观;并能应用所学
知识解决实
际问题。
2.在复习整理和交流学习的过程中,培养学生归纳、总结等自我复习能
力及团队合作精神。
复习重点:理清知识间的联系,建构起知识网络。
复习准备:1.实物投影、多媒体课件
2.课前自主复习:
复习过程:
一、开门见山
谈话:今天我们复习比和比例的有关内容。(出示课题)
二、整理知识
1、用“比的知识”说说男同学、女同学、全班人数的关系?(课件出
示)回答下列问题:
男生人数和女生人数的比是 ( )。
女生人数和男生人数的比是 ( )。
男生人数和全班人数的比是 (
)。
女生人数和全班人数的比是 ( )。
全班人数和男生人数的比是 ( )。
全班人数和女生人数的比是 ( )。
小结:什么是比?两个数相比要注意什么?(比的前后顺序,前项与后
项顺序)
2、思考:举例一个比,能和黑板上的比,组成比例。什么是比例?
比值相等的两个比组成的等式。
3、我们学习了那些有关比和比例的知识?先独立回忆,思考,再小组
内交流
㈠小组交流
学生小组交流,教师巡视了解情况。
合作要求:
①先在小组内说说这部分知识之间的联系与区别。
②用自己喜欢的方式,在题纸上把这部分知识写一写。
﹙例如:画图表……﹚
㈡全班交流
指名三个小组分别上台交流三个部分。其他学生倾听、纠偏、补充、提
问。
教师注意以下知识要点:
比的知识要点
1.两个数相除叫做两个数的比。
2.比、分数、除法三者之间既有联系,又有区别。
3.比的前项和比的后项同时乘以或除以
相同的数(0除外)比值不变,
这叫做比的基本性质。(注意比的基本性质与分数的基本性质、商不变<
/p>
的规律的联系)
4.应用比的基本性质可以化简比。
5.用比的前项
除以比的后项,所得的商叫比值。比值可以是整数、分
数、小数。(注意化简比与求比值的区别。)
比例的知识要点
1、表示两个比相等的式子叫做比例。
2、在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性
质。
3、应用比例的基本性质可以解比例、组比例,还可以求两个数的比。
4、图上距离比实际距离的比,叫做比例尺。
(三)将这些有关比和比例知识之间的联系整理成思维导图。先独立整
理,然后汇报整理结果。
预设三种整理结果:
(四)比和比例之间的区别
1、比和比例之间的区别是什么?小组交流,讨论,完成下列表格:
比 比例
意义 两个数的比表示两个数相除。 表示两个比相等的式子叫做比例。
各部分
名 称
3 ∶ 2 =
1.5
前项 后项 比值
0.4 ∶ 0.8 =
1.2 ∶ 2.4
內项
外项
基 本
性 质
比的前项和后项同时乘上或者同时在比例里,两个内项的
除以相同的数(0除外),比值不变。 积等于两个外项的积。
2、比的基本性质和比例的基本性质有什么作用?
①比的基本性质可以帮助我们把比化成最简单的整数比。
②比例的基本性质可以帮助我们解比例。
练习:
化简比:2:23
解比例:27:x=14:2
(五)比和分数、除法有什么联系?又有什么区别呢?小组交流并完成
下表:
分数
除法
比
联系
各部分名称
例子
三、综合练习
㈠心中有数。
1、甲车4小时行驶280km,乙车3小时行驶300km。
①甲车行驶的路程与时间的比是( )。
②乙车行驶的路程与时间的比是(
)。
③乙车与甲车行驶的路程比是( )。
④甲车与乙车行驶的时间比是( )。
2、把5克糖放入100克水中,糖与糖水的比是( )。
3、把1吨:250千克化成最简整数比是( ),它们的比值是( )。
4、如果
n
×4=
m
×7,那么
n
:
m
=( ):(
)。
㈡明辨是非
1、大圆的周长和直径的比和小圆的周长和直径的比一定能组成比例。
( )
2、两个圆的半径的比是2:3,它们面积的比是4:6。 ( )
3、甲数比乙数多10%,乙数与甲数的比是9:10。 ( )
㈢大显身手
先把应用题补充完整,然后只列式不计算。
校园里杉树与樟树棵数的比是3:5,(
),樟树有多少棵?
四、课堂总结
这堂课你最大的收获是什么?还有什么问题?: