比和比例教学提纲

绝世美人儿
630次浏览
2020年12月05日 19:43
最佳经验
本文由作者推荐

我的祖国诗歌-小小律师

2020年12月5日发(作者:孟兆泰)


和例




比比


比例、正反比例
【知识点梳理】:
一、重点难点:
1.重点:



1、知道比例的项以及内项,外项;理解比例的意义与基本性质。了解比
例尺的相关知识。



2、能正确的判断正反比例。
【例题精讲】:

例1:

6.4
(1)6.4 : 4=9.6 : 6或,表示两个比相等的式子叫做比例。

4
下面哪几组的两个比可以组成比例?把组 成的比例写出来.并指出比例内项和比例外项.

10 : 12和25 : 30 2 : 8和9 : 27 0.9 : 3和
11
:

5
15




(2)在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

应用比例的基本性质,判断下面的两个比能否组成比例,如果能,把组成的比例写出来。

0.34 : 3.5和0.65 : 4.8 5.1 : 1.53和2.9 : 0.87




随堂练习1:应用比例的基本性质,判断下面的两个比能否组成比例,如果能,把组成的
比例写出来 。

1581
1



5
259
9



解比例:

0.49163111
=

=
x:

9.8x42020



12
1
1
:=:(4-
x
) 0.4:
x
=(1+):5

27
3
7






例2:判断下面每题中的两种量成什么比例?

(1)速度一定,路程和时间.

(2)路程一定,速度和时间

(3)单价一定,总价和数量

(4)每小时耕地的公顷数一定,耕地的总公顷数和时间

(5)全校学生做操,每行站的人数和站的行数

(6) 一堆煤的总重量一定,烧去的和剩下的



随堂练习2:

(1)工作效率一定,工作总量和工作时间( )比例

工作时间一定,工作效率和工作总量( )比例

工作总量一定,工作效率和工作时间( )比例


(2)
车轮的周长(或半径、直径)一定,车轮前进路程和转数( )比例

(3)
要行的总路程一定,已经走过的路程和剩下的路程( )比例

(4)
在规定的时间里,制造每个零件的时间和制造零件的个数( )比例

(5) 一批纸总页数一定,装订练习本本数和每本练习本的页数( )比例



1
例3:在比例尺是
800000
的 地图上,量得A、B两地距离是15厘米,一辆汽车以每小时
45千米的速度从A地出发,经过多少小时 才能到达B地?





随堂练习3:在一幅1:300 0000的地图上,量得甲乙两地公路长14厘米,一辆汽车从甲地
到乙地行驶了7小时,平均每小时行 多少千米?





例4:在一幅比例尺为1:500的 地图上,量得一间教室的长是3厘米,宽是2厘米,求这
间教室的实际占地面积。





随堂练习4:一个长方形的游泳池,把它画在1:1000的图纸上, 所画的图形的长是5厘
米,宽是3厘米,这个游泳池的占地面积是多少平方米?




例5:

(1)用一根96厘米的铁丝焊成一个 长方体的框架,使长方体的长、宽、高的比是
5:4:3,这个长方体的体积是多少?




(2)两地相距392千米,甲、乙两辆汽车同时从两地相对开出,< br>速度比是4:3,甲、乙两车每小时各行多少千米?

14
小时相遇.甲、乙的
3




随堂练习5:

1、
长方体棱长的和是216厘米,它的长、宽、高之比是4 :3:2,长方体的表面积和体积是
多少?






2、
甲、乙两地相距4750千米,客车和货车同时从两地相对开出,已知货车每小 时行45
千米,货车与客车的速度比是9:10,经过几小时两车相遇?








例6:装订一本书,如果每页排 500个字,可以排180页,如果改为每页排600个字,可
以少排多少页?(用比例解)






随堂练习6:用边长15厘米的方砖给教室铺地 ,需要2000块,如果用边长25厘米的方砖
铺地需要多少块?






1.
比的意义和性质。

两个数相除,又叫做这两个数的比。

“︰”叫做比号,读作“比”。比号前面的数叫 做比的前项,比号后面的数,叫做比的后
项。

比的前项除以比的后项,所得的商,叫做比值。

比与除法与分数之间的联系:



除法

分数

比的后项不能是零。

比的基本性质:比的前项和比的后项同时乘或除以一个相同的数(零除外),比值不变。

前项

被除数

分子

比号

除号

分数线

后项

除数

分母

比值



分数值


应用比的基本性质可以把比化成最简单的整数比。把比化成最简单的整数比,通常叫做化
简比 。

2.
按比分配。

在日常生活、生产和科学实验中,常常把一个数量按照一定的比,分成两部分或几部分。

3.
比例和比例的性质。

表示两个比相等的式子叫做比例。
< br>组成比例的四个数,叫做比例的项。比例两端的两个项,叫做外项,中间的两个项叫做内
项。
比例的基本性质:在比例里,两个外项的积等于两个内项的积。

解比例:根据 比例的基本性质哦,如果知道比例中的任何三个项,就可以求出另外一个未
知项是多少。

4.
比例尺。

在绘制地图或其他平面图时3,有时需要把实际距离缩小或 扩大若干倍以后,在画到纸
上。这时,就要确定图上距离和实际距离的比。

图上距离与实际距离的比,叫做这幅图的比例尺。

图上距离︰实际距离=比例尺

或 图上距离实际距离=比例尺

为了方便计算,通常那比例尺写成前项为1的比。

数值比例尺 如1︰50000

线段比例尺 如0 80

5.
正比例的意义。

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量 相对应的两个数的
比值(也就是商)一定,那么这两种量就叫做成正比例的量。它们之间的关系,是正比 例
关系。

如果用字母x、y分别表示这两种相关联的量,用k表示比值,可以用下面 的式子表
示:yx=k(一定)

6.
反比例的意义。

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的
积一定,那么这两 种量就叫做成反比例的量。它们之间的关系,是反比例关系。


如果用字母x、 y分别表示这两种相关联的量,用k表示积,可以用下面的式子表示:
xy=k(一定)。






一、解比例
(1) 5:48=x:4 (2)x:50=4:7



(3)2:x=1.8:3.6 (4)0.6:3.6=1.2:x




二、填空题
1、六(1)班有男生28人,比女生多4人,男生人数和女生人数的比是(
人人数和全班人数的比是( )
2、甲数除以乙数的商是1.8,甲乙两数的比是( )
3、把80分钟和0.4小时化简比是( ),比值是( )
4、甲数比乙数少20%,甲与乙的比是( )
5、男职工人数的60%与女职工人数的75%相等,男女职工人数的比是(
6、根据4:5=2:2.5,写出一道乘法算式是( )
7、如果3A=4B,那么A:B=( )
8、在一个比例中,两个内项互为倒数,那么两个外项的积是( )
9、从24的约数中选出4个数,组成一个比例是(


),女



10、在3:5中若前项增加9,要使比值不变,后项应增加( ),若后项增加10,要
使比值不变,前项应增加( )
三、判断下面各题成正、反比例还是不成比例。

1、总价一定,单价和数量( )比例

数量一定,单价和总价( )比例

单价一定,数量和总价( )比例

2、用大豆榨油时,出油率一定时,油的重量和大豆的重量( )比例

大豆的重量一定,油的重量和出油率( )比例

油的重量一定时,大豆的重量和出油率( )比例

3、甲×乙=丙,当丙一定时,甲和乙( )比例

当甲一定时,丙和乙( )比例

当乙一定时,甲和丙( )比例

4、每件上衣用布量一定,做上衣的件数和用布总米数( )比例

5、每块砖的面积一定,铺地总面积和用砖的总块数( )比例

6、铺地总面积一定,每块砖的面积和用砖的总块数( )比例

7、每立方厘米的铁的重量一定,铁的总重量和体积( )比例

8、购买各种货物的总价和数量( )比例

9、互相咬合的齿轮的齿数和转数( )比例

10、一个人的身高和体重( )比例


四、解决问题

1、一个零件长8厘米,画在设计图的长度是16毫米,这幅图的比例尺是多少?





2、在比例尺是1:1000的三角形草坪平面图上,量得草坪的底是 8.5厘米,高是4厘米,
草坪的实际占地面积是多少平方米?




3、甲、乙两个仓库共有救灾物资810吨,从两个仓库各调出1 50吨物资后,甲、乙两仓库
所剩的物资比是10:7,原来甲、乙两仓库各有物资多少吨?


4、在比例尺是1:3000000的地图上,量得甲、乙两地相距18厘米,客车与货车分 别从
甲、乙两地同时相向而行,5小时相遇,已知客车和货车的速度比是5:4,问客车和货车
的速度差是多少?



5、某工厂有男职工210人,女职工400人,现 在工厂进行资产重组,一共安排工人下岗
183人,如果按男、女工下岗的人数与原有人数的比相同,则 男职工和女职工各要安排多
少人下岗?



6、粮食加工厂第一车 间有3台碾米机,4.5小时碾米4320千克,第二车间有5台同样的
碾米机,每天加工8小时,可以 碾米多少千克?



7、工程队铺一段路,原计划每天铺320米,15天 可以铺完,实际施工时,由于改进了操
作方法,前4天就铺了1600米,这样计算,可以比原计划提前 几天完成?



8、化肥厂经过改革,日产量比原来的20 吨提高25%,原来30天的产量,现在需多少天能
完成?


9、铺一块长 20米,宽15米的长方形地,需要用砖270块,现在有这种砖3600块,可以
铺多少平方米的地? (用比例解)



1、
甲城和乙城都有一个动物园,甲城动物园与 乙城动物园猴子只数的比是5:3,后来甲城
动物园送给乙城动物园14只猴子,这是甲城动物园和乙城 动物园猴子只数的比是1:2,原
来甲城和乙城各有多少只猴子?


3
2、
甲乙两校参加一次数学竞赛,甲校报名参加竞赛的人数占两校参赛总人数的,竞赛< br>5
时甲校有50人没参加竞赛,这时两校参赛人数的比是7:8,甲校实际参加竞赛的有多少人?




3、
龟兔举行100米赛跑,第一次当兔 子到达终点时,乌龟距离终点还有80米。第二次兔
子就后退80米,乌龟和兔子同时再起跑,它们谁先 到达终点?




4、甲、乙、丙三人百米赛跑,当丙到达终点时 ,甲离终点还有5米,乙离终点还有2米,
它们三人速度之比是多少?它们跑百米所用时间之比是多少?



5、甲、乙两人同时开工加工机器零件,甲的任务是乙的
1
,甲每小时能做25个,乙每小
2
时能做40个,当甲完成任务时,乙还剩120个 ,乙要生产多少个零件?

如何申请qq-七年级语文教学计划


小学英语五年级下册-一望无际的


qq表情图-qq壁纸图片


初级蛋白油-初二上册英语课本


九球-鲁迅的作品简介


没有规矩不能成方圆-搞笑话剧剧本


原谅歌词-新虎口遐想


习惯两个人歌词-2018高考作文题