公务员考试之容斥原理及解题的技巧

绝世美人儿
617次浏览
2020年12月05日 21:14
最佳经验
本文由作者推荐

红萝卜排骨汤-春分手抄报

2020年12月5日发(作者:祁顺)



公务员考试之容斥原理解题技巧

一、两集合类型
1、解题技巧
题目中所涉及的事物属于两集合时,容斥原理适用于条件与问题都可以直接
带入公式的题目,公式如下:
A∪B=A+B-A∩B
快速解题技巧:总数=两集合数之和+两集合之外数-两集合公共数
2、真题示例
【例1】现有50名学生都做物理、化学实验,如果物理实验做正确的有40
人,化学实验做正确的有3 1人,两种实验都错的有4人,则两种实验都做对的
有( )
A、27人
B、25人
C、19人
D、10人
【答案】B

【解析】直接代入公式为:50=31+40+4-A∩B
得A∩B=25,所以答案为B。
【例2】某服装厂生产出来的一批衬衫大号和小号各占一半。其 中25%是白
色的,75%是蓝色的。如果这批衬衫共有100件,其中大号白色衬衫有10件,
小号蓝色衬衫有多少件?( )



A、15
B、25
C、35
D、40
【答案】C

【解析】这 是一种新题型,该种题型直接从求解出发,将所求答案设为A∩
B,本题设小号和蓝色分别为两个事件A 和B,小号占50%,蓝色占75%,直接代
入公式为:100=50+75+10-A∩B,得:A∩ B=35。
二、三集合类型
1、解题步骤
涉及到三个事件的集合, 解题步骤分三步:①画文氏图;②弄清图形中每一
部分所代表的含义,按照中路(三集合公共部分)突破 的原则,填充各部分的数
字;③代入公式(A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B ∩C)进行求解。
2、解题技巧
三集合类型题的解题技巧主要包括一个计算公式和文氏图。
公式:总数=各集合数之和-两集合数之和+三集合公共数+三集合之外数
3、真题示例
【例3】【国考2010-47】某高校对一些学生进行问卷调查。在接受调查的
学生中, 准备参加注册会计师考试的有63人,准备参加英语六级考试的有89
人,准备参加计算机考试的有47 人,三种考试都准备参加的有24人,准备只选
择两种考试都参加的有46人,不参加其中任何一种考试 的都15人。问接受调查
的学生共有多少人?( )
A.120
B.144



C.177
D.192
【答案】A
【解析】本题画图按中路突破原则,先填充三集合公共部分数字24,再推
其他部分数字:
根据每个区域含义应用公式得到:
总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数
=63+89+47-{(x+24)+(z+24)+(y+24)}+24+15
=199-{(x+z+y)+24+24+24}+24+15
根据上述含义分析得到:x+z +y只属于两集合数之和,也就是该题所讲的只
选择两种考试都参加的人数,所以x+z+y的值为46 人;得本题答案为120.
【例4】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和 电影、
戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球
赛又 喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢
看的有12人,则只喜欢看 电影的有多少人( )
A.22人 B.28人 C.30人 D.36人
【答案】A

【解析】本题画图按中路突破原则,先填充三集合公共部分数字12,再推
其他部分数字:
根据各区域含义及应用公式得到:
总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数
100=58+38+52-{18+16+(12+ x)}+12+0,因为该题中,没有三种都不喜欢的人,所以三集合之外数为0,解方程得到:x=14。52=x+12+4+Y=14+12+4+Y,< br>得到Y=22人。(曾凡稳)




一、两集合类型

1、解题技巧

题目中所涉及的事物属于两集合时,容斥原理适用于条件与问题都 可以直接
带入公式的题目,公式如下:

A∪B=A+B-A∩B

快速解题技巧:总数=两集合数之和+两集合之外数-两集合公共数

2、真题示例

【例1】现有50名学生都做物理、化学实验,如果物理实验做正确的 有40
人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对
的有( )



【答案】C

【解析】直接代入公式为:50=31+40+4-A∩B

得A∩B=25,所以答案为B。

【例2】某服装厂生产出来的一批衬衫大号和小号 各占一半。其中25%是白
色的,75%是蓝色的。如果这批衬衫共有100件,其中大号白色衬衫有1 0件,
小号蓝色衬衫有多少件?( )

A、15 B、25 C、35 D、40

【答案】C

【解析】这是一种新题型,该种题型直接从求解出发,将所求答案设为A ∩
B,本题设小号和蓝色分别为两个事件A和B,小号占50%,蓝色占75%,直接代
入公式 为:100=50+75+10-A∩B,得:A∩B=35。

二、三集合类型

1、解题步骤

涉及到三个事件的集合,解题步骤分三 步:①画文氏图;②弄清图形中每一
部分所代表的含义,按照中路(三集合公共部分)突破的原则,填充 各部分的数
字;③代入公式(A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C)进行求 解。



2、解题技巧

三集合类型题的解题技巧主要包括一个计算公式和文氏图。

公式:总数=各集合数之和-两集合数之和+三集合公共数+三集合之外数

文氏图如下:




其中各区域含义分别为:1区域 代表只属于A集合;2区域代表只属于A和
B;3区域代表只属于B集合;4区域代表只属于B和C;5 区域代表三集合公共
部分;6区域代表只属于A和C;7区域代表只属于C集合;2+5区域代表A∩B ;
4+5区域代表B∩C;5+6区域代表A∩C;1+2+5+6区域代表属于A集合 ;3+2+5+4
区域代表属于B集合;4+5+6+7区域代表属于C集合。

3、真题示例

【例3】
【国考2010-47】某高校对一些学生 进行问卷调查。在接受调查的学
生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有 89人,
准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两
种考 试都参加的有46人,不参加其中任何一种考试的都15人。问接受调查的学
生共有多少人?( )
A.120 B.144 C.177 D.192

【答案】A
【解析】
本题画图按中路突破原则,先填充三集 合公共部分数字24,再推其
他部分数字,得下图:




根据每个区域含义应用公式得到:

总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数

=63+89+47-{(x+24)+(z+24)+(y+24)}+24+15

=199-{(x+z+y)+24+24+24}+24+15

根据上术含义分析得到:x +z+y只属于两集合数之和,也就是该题所讲的只
选择两种考试都参加的人数,所以x+z+y的值为 46人;得本题答案为120.

【例4】对某单位的100名员工进行调查,结果发 现他们喜欢看球赛和电影、
戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜 欢看球
赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢
看的有 12人,则只喜欢看电影的有多少人( )

A.22人 B.28人 C.30人 D.36人

【答案】A
【解析】
本题画图按中路突破原则,先填 充三集合公共部分数字12,再推其
他部分数字,得下图:




根据各区域含义及应用公式得到:

总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数

100=58+38+52-{18+16+(12+ x)}+12+0,因为该题中,没有三种都不喜欢的人,所以三集合之外数为0,解方程得到:x=14。52=x+12+4+Y=14+12+4+Y,< br>得到Y=22人。


公务员行测考试数量关系容斥原理题目
巧解
http: 2010年09月13日 11:13 华图公务员
容斥原理是公务员考试中较难的一类题目,一般的解题思路有两种:
1、 公式法,适用于“条件与问题”都可直接代入公式的题目;
2、 文氏图示意法,即当条件与问题不能直接代入公式时,需要利用该方法解决。
一般而言,能够直接 代入公式的题目较容易,而需要利用文氏图的题目相对灵活,容易
给考生解题带来不便。如果大家能够对 公式中的各个要素以及文氏图上的各个部分所代表的
含义有深入了解,则可以快速抓住解题关键。
【例题】某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的—
个课 外活动小组。现已知参加英语小组的有17人。参加语文小组的有30人,参加数学小组
的有13人。如 果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?
A.15 B.16 C.17 D.18
对于 这个题目,一般思路为:将题目条件带入三集合文氏图,假设只参加两个小组的人
数分别为x,y,z人 ,由加减关系可以得到只参加一个小组的人数的表示形式,根据总人数
可以列出方程:
(13-5-x-y)+(17-5-x-y)+(30-5-x-y)+x+y+z+5=35,
从而得到x+y+z=15,即为所求。





该方 法是利用文氏图和列方程的方法进行解题,方法简单易懂,但是实际操作起来消耗
时间较多,下文将给出 本题的另外两种解法:
【解法1】文氏图与三集合标准型公式相结合。
三集合标准型的公式如下:AUBUC=A+B+C-(AB+AC+BC)+ABC。
将语文小 组的人数视为A,数学小组人数视为B,英语小组人数视为C,分别代入公式
可以得到AB+AC+BC =30。“AB+AC+BC”中包含三个ABC,因此要减去两个,即
AB+AC+BC-2ABC= 20,即为至少选两个小组的人数,因此,得到只参加一个小组的人数=总人
数(AUBUC=35)减 去至少选两个小组的人数(AB+AC+BC-2ABC=20),等于15。

该方法将 文氏图与三集合标准型公式结合使用,避免了求解不必要要素的过程,这需要
各位考生对于基本公式和文 氏图各部分的意义有深刻理解。对于这道题目而言,还有更加快
速的解题方法,如下:
【 解法2】通过读题,我们可以发现,英语小组、语文小组、数学小组在题目中都是同
时出现,即这三个小 组是并列关系,对于这三个小组的人数,即17、30、13三个数字只能
用加法处理,等于60。这样 原题五个数字(35、17、30、13、5)就变为三个(35、60、5),
而这三个数字之间只能 做加减,而不能做乘除,因此,得到结果的尾数必为“0”或“5”。
在得到这个结论之后,我们 观察一下选项,发现只有A选项尾数为5,因此,本题答案
确定无疑,就是A。本题成功实现“秒杀”。



关于容斥原理的考试题目千变万化,但是无论怎样变化都离不开基本公式 和文氏图,考
生在平时练习的时候一定要熟练掌握这两种方法,从而提高做题速度与正确率,并争取针对
个性化的题目产生巧妙的方法。

山东公务员行测:数量关系之容斥问题解题原理及方法
一、知识点

1、集合与元素:把一类事物的全体放在一起就形成一个集合。每个集合总是由一些成
员组成的,集合的 这些成员,叫做这个集合的元素。
如:集合A={0,1,2,3,……,9},其中0,1,2,…9为A的元素。
2、并集:由 所有属于集合A或集合B的元素所组成的集合,叫做A,B的并集,记作
A∪B,记号“∪”读作“并” 。A∪B读作“A并B”,用图表示为图中阴影部分表示集合A,B
的并集A∪B。

例:已知6的约数集合为A={1,2,3,6},10的约数集合为B={1,2,5,10}, 则A
∪B={1,2,3,5,6,10}
3、交集:A、B两个集合公共的元素,也就 是那些既属于A,又属于B的元素,它们
组成的集合叫做A和B的交集,记作“A∩B”,读作“A交B ”,如图阴影表示:

例:已知6的约数集合A={1,2,3,6},10的约数集合 B={1,2,5,10},则A∩B={1,
2}。
4、容斥原理(包含与排除原理):
(用|A|表示集合A中元素的个数,如A={1,2,3},则|A|=3)



原理一:给定两个集合A和B,要计算A∪B中元素的个数,可以分成两步进行:
第一步:先求出∣A∣+∣B∣(或者说把A,B的一切元素都“包含”进来,加在一起);
第二步:减去∣A∩B∣(即“排除”加了两次的元素)
总结为公式:|A∪B|=∣A∣+∣B∣-∣A∩B∣
原理二:给定三个集合A,B,C。要计算A∪B∪C中元素的个数,可以分三步进行:
第一步:先求∣A∣+∣B∣+∣C∣;
第二步:减去∣A∩B∣,∣B∩C∣,∣C∩A∣;
第三步:再加上∣A∩B∩C∣。
即有以下公式:
∣A∪B∪C∣=∣A∣+∣B∣+∣C∣-∣A∩B∣-∣B∩C∣- |C∩A|+|A∩B∩C∣
二、例题分析:

例1 求不超过20的正整数中是2的倍数或3的倍数的数共有多少个。
分析:设A={20以内2的倍 数},B={20以内3的倍数},显然,要求计算2或3的倍
数个数,即求∣A∪B∣。
解1:A={2,4,6,…20},共有10个元素,即|A|=10
B={3,6,9,…18},共有6个元素,即|B|=6
A∩B={既是2的倍数又是3的倍数}={6,12,18},共有3个元素,即|A∩B|=3
所以∣A∪B∣=∣A∣+∣B∣-∣A∩B∣=10+6-3=13,即A∪B中共有13个元素。
解2:本题可直观地用图示法解答




如图,其中,圆A中放的 是不超过20的正整数中2的倍数的全体;圆B中放的是不超
过20的正整数中3的倍数的全体,其中阴 影部分的数6,12,18是既是2的倍数又是3的
倍数的数(即A∩B中的数)只要数一数集合A∪B 中的数的个数即可。
例2 某班统计考试成绩,数学得90分上的有25人;语文得90分以上的 有21人;两科中
至少有一科在90分以上的有38人。问两科都在90分以上的有多少人?
解:设A={数学成绩90分以上的学生}
B={语文成绩90分以上的学生}
那么,集合A∪B表示两科中至少有一科在90分以上的学生,由题意知,
∣A∣=25,∣B∣=21,∣A∪B∣=38
现要求两科均在90分以上的学生人数,即求∣A∩B∣,由容斥原理得
∣A∩B∣=∣A∣+∣B∣-∣A∪B∣=25+21-38=8
点评:解决本题首先要根据题意,设出集合A,B,并且会表示A∪B,A∩B,再利用
容斥原理求解。
例3 某班同学中有39人打篮球,37人跑步,25人既打篮球又跑步,问全班参加篮球、
跑步这两项体育活动的总人数是多少?
解:设A={打篮球的同学};B={跑步的同学}
则 A∩B={既打篮球又跑步的同学}
A∪B={参加打篮球或跑步的同学}
应用容斥原理∣A∪B∣=∣A∣+∣B∣-∣A∩B∣=39+37-25=51(人)
例4 求在不超过100的自然数中,不是5的倍数,也不是7的倍数有多少个?
分析:这个问题与前几个例题看似不相同,不能直接运用容斥原理,要计算的是“既不



是5的倍数,也不是7的倍数的数的个数。”但是,只要同学们仔细分析题意,这只需先算
出“ 100以内的5的倍数或7的倍数的数的个数。”再从100中减去就行了。
解:设A={100以内的5的倍数}
B={100以内的7的倍数}
A∩B={100以内的35的倍数}
A∪B={100以内的5的倍数或7的倍数}
则有∣A∣=20,∣B∣=14,∣A∩B∣=2
由容斥原理一有:∣A∪B∣=∣A∣+∣B∣-∣A∩B∣=20+14-2=32
因此,不是5的倍数,也不是7的倍数的数的个数是:100-32=68(个)
点评:从以上的 解答可体会出一种重要的解题思想:有些问题表面上看好象很不一样,
但经过细心的推敲就会发现它们之 间有着紧密的联系,应当善于将一个问题转化为另一个问
题。
例5 某年级的课外学科小 组分为数学、语文、外语三个小组,参加数学小组的有23人,
参加语文小组的有27人,参加外语小组 的有18人;同时参加数学、语文两个小组的有4人,
同时参加数学、外语小组的有7人,同时参加语文 、外语小组的有5人;三个小组都参加的
有2人。问:这个年级参加课外学科小组共有多少人?
解1:设A={数学小组的同学},B={语文小组的同学},C={外语小组的同学},A∩B= {数
学、语文小组的同学},A∩C={参加数学、外语小组的同学},B∩C={参加语文、外语小组
的同学},A∩B∩C={三个小组都参加的同学}
由题意知:∣A∣=23,∣B∣=27,∣C∣=18
∣A∩B∣=4,∣A∩C∣=7,∣B∩C∣=5,∣A∩B∩C∣=2
根据容斥原理二得:
∣A∪B∪C∣=∣A∣+∣B∣+∣C∣-∣A∩B∣-∣A∩C|-∣B∩C|+|A∩B∩C∣
=23+27+18-(4+5+7)+2
=54(人)



山东公务员行测:数量关系之容斥问题解题原理及方法
解2: 利用图示法逐个填写各区域所表示的集合的元素的个数,然后求出最后结果。


设A、B、C分别表示参加数学、语文、外语小组的同学的集合,其图分割成七个互不
相交的区域,区域 Ⅶ(即A∩B∩C)表示三个小组都参加的同学的集合,由题意,应填2。区
域Ⅳ表示仅参加数学与语文 小组的同学的集合,其人数为4-2=2(人)。区域Ⅵ表示仅参加数
学与外语小组的同学的集合,其人 数为7-2=5(人)。区域Ⅴ表示仅参加语文、外语小组的同
学的集合,其人数为5-2=3(人)。 区域Ⅰ表示只参加数学小组的同学的集合,其人数为
23-2-2-5=14(人)。同理可把区域Ⅱ、 Ⅲ所表示的集合的人数逐个算出,分别填入相应的区域
内,则参加课外小组的人数为;
14+20+8+2+5+3+2=54(人)
点评:解法2简单直观,不易出错。由于各个区域 所表示的集合的元素个数都计算出来
了,因此提供了较多的信息,易于回答各种方式的提问。
例6 学校教导处对100名同学进行调查,结果有58人喜欢看球赛,有38人喜欢看戏
剧,有52人 喜欢看电影。另外还知道,既喜欢看球赛又喜欢看戏剧(但不喜欢看电影)的有6
人,既喜欢看电影又喜 欢看戏剧(但不喜欢看球赛)的有4人,三种都喜欢的有12人。问有
多少同学只喜欢看电影?有多少同 学既喜欢看球赛又喜欢看电影(但不喜欢看戏剧)?(假定每
人至少喜欢一项)
解法1: 画三个圆圈使它们两两相交,彼此分成7部分(如图)这三个圆圈分别表示三种
不同爱好的同学的集合, 由于三种都喜欢的有12人,把12填在三个圆圈的公共部分内(图
中阴影部分),其它6部分填上题目 中所给出的不同爱好的同学的人数(注意,有的部分的人



数要经过简单的计算 )其中设既喜欢看电影又喜欢看球赛的人数为χ,这样,全班同学人数就
是这7部分人数的和,即
16+4+6+(40-χ)+(36-χ)+12=100
解得 χ=14
只喜欢看电影的人数为
36-14=22



解法2:设A={喜欢看球赛的人},B={喜欢看戏剧的人},C={喜欢看电影的人},依题< br>目的条件有|A∪B∪C|=100,|A∩B|=6+12=18(这里加12是因为三种都喜欢的人当 然喜欢其
中的两种),|B∩C|=4+12=16,|A∩B∩C|=12,再设|A∩C|=12+ χ由容斥原理二:|A∪B∪C
|=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C|
得:100=58+38+52-(18+16+х+12)+12
解得:х=14
∴36-14=22
所以既喜欢看电影又喜欢看球赛的人数为14,只喜欢看电影的人数为22。
点评:解法1没有用容斥原理公式,而是先分别计算出(未知部分设为х)各个部分(本题
是7部分)的数目,然后把它们加起来等于总数,这种计算方法也叫“分块计数法”,它是利
用图示的方 法来解决有关问题,希望同学们能逐步掌握此类方法,它比直接用容斥原理公式
更直观,更具体。
例7、某车间有工人100人,其中有5个人只能干电工工作,有77人能干车工工作,
8 6人能干焊工工作,既能干车工工作又能干焊工工作的有多少人?
解:工人总数100,只能干电工工作的人数是5人,除去只能干电工工作的人,这个车



间还有95人。 利用容斥原理,先多加既能干车工工作又能干焊工工作的这一部分,其总数
为 163,然后找出这一公共部分,即163-95=68
例8、某次语文竞赛共有五道题(满分不 是100分),丁一只做对了(1)、(2)、(3)三题得了
16分;于山只做对了(2)、(3)、 (4)三题,得了25分;王水只做对了(3)、(4)、(5)三题,得了28
分,张灿只做对了(1 )、(2)、(5)三题,得了21分,李明五个题都对了他得了多少分?
解:由题意得:前五名 同学合在一起,将五个试题每个题目做对了三遍,他们的总分恰
好是试题总分的三倍。五人得分总和是1 6+25+30+28+21=120。因此,五道题满分总和是
120÷3=40。所以李明得40分 。
例9,某大学有外语教师120名,其中教英语的有50名,教日语的有45名,教法语的有40名,有15名既教英语又教日语,有10名既教英语又教法语,有8名既教日语又教法
语,有 4名教英语、日语和法语三门课,则不教三门课的外语教师有多少名?
解:本题只有求出至少教英 、日、法三门课中一种的教师人数,才能求出不教这三门课
的外语教师的人数。至少教英、日、法三门课 中一种教师人数可根据容斥原理求出。根据容
斥原理,至少教英、日、法三门课中一种的教师人数为50 +45+40-15-10-8+4=106(人)不教这三
门课的外语教师的人数为120-106= 14(人)

公务员考试《行测》数量关系容斥原理题解题方法
来源:华图 2010-9-10 11:29:58 【考试吧:中国教育培训第一门户】 模拟考场
[导读]容 斥原理是公务员考试行政职业能力测验数量关系中较难的一类题,一般的解题思路有
两种:公式法,文氏 图示意法。
容斥原理是公务员考试行政职业能力测验数量关系中较难的一类题,一般的解题思路有
两种:
1、 公式法,适用于“条件与问题”都可直接代入公式的题目;
2、 文氏图示意法,即当条件与问题不能直接代入公式时,需要利用该方法解决。



一般而言,能够直接代入公式的题较容易,而需要利用文氏图的题目相对灵活,容易给
考生 解题带来不便。如果考生能够对公式中的各个要素以及文氏图上的各个部分所代表的含
义有深入了解,则 可以快速抓住解题关键。
例:某班有35个学生,每个学生至少参加英语小组、语文小组、数学小 组中的—个课
外活动小组。现已知参加英语小组的有17人。参加语文小组的有30人,参加数学小组的 有
13人。如果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?
A.15 B.16 C.17 D.18
对于这道题,一般思路为:将题目条件带入三集合文氏 图,假设只参加两个小组的人数
分别为x,y,z人,由加减关系可以得到只参加一个小组的人数的表示 形式,根据总人数可
以列出方程:
(13-5-x-y)+(17-5-x-y)+(30-5-x-y)+x+y+z+5=35,
从而得到x+y+z=15,即为所求。

该方法是利用文氏图和列方程的方法进行解题 ,方法简单易懂,但是实际操作起来消耗
时间较多,下文将给出本题的另外两种解法:
解法1:文氏图与三集合标准型公式相结合。
三集合标准型的公式如下:AUBUC=A+B+C-(AB+AC+BC)+ABC。



将语文小组的人数视为A,数学小组人数视为B,英语小组人数视为C, 分别代入公式
可以得到AB+AC+BC=30。“AB+AC+BC”中包含三个ABC,因此要减去 两个,即AB+AC+
BC-2ABC=20,即为至少选两个小组的人数,因此,得到只参加一个小组 的人数=总人数(A
UBUC=35)减去至少选两个小组的人数(AB+AC+BC-2ABC=20 ),等于15。

该方法将文氏图与三集合标准型公式结合使用,避免了求解不必要要素 的过程,这需要
各位考生对于基本公式和文氏图各部分的意义有深刻理解。

webqq空间-企业形象包括


端午节艾草-幼儿生活小常识


广西211大学-狂狮怒吼


火车票可以提前多少天预订-高端女装品牌


物竞天择适者生存的意思-宝峰湖


周公解梦孕妇梦见蛇-全面质量管理理论


减掉大象腿-清远景点


淡泊名利-怎么说话好听