小学数学典型应用题22:容斥问题(含解析)

巡山小妖精
584次浏览
2020年12月05日 21:17
最佳经验
本文由作者推荐

怎么会得艾滋病-野战师

2020年12月5日发(作者:边疆)


小学数学典型应用题22:容斥问题(含解析)
容斥问题
【含义】
容斥原理是解决计数问题的重要方法,在计数时要求注意无一重复无一
遗漏,为了使重 叠部分不被重复计算,人们研究出一种新的计数方法。

这种方法的基本思想是:先不考虑重叠 的情况,把包含于某内容中的所有
对象的数目先计算出来,

然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无
重复,

这种计数的方法称为容斥原理。

常见的容斥问题有两者容斥、三者容斥两种。

【数量关系】
★ A∪B = A+B - A∩B

★ A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C

解题思路和方法
先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,

然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无
重复。

可画文氏(韦恩)图来解题。

例1:

有两块木板各长50厘米, 把两块木板钉成一块长木板,中间钉在一起的重
叠部分长8厘米。


钉成的木板长 _____ 厘米。

解:

1 、本题考查了学生的运算能力、应用能力。解决重叠问题时,要注意重叠
的部分不能重复计算。

2、两块木板一共长50+50=100(厘米),

如果钉在一起,说明原来的两个 8厘米变成了一个8厘米,这样
钉成的木板比100厘米少了8厘米,

所以钉成的木板长100-8=92(厘米)。

例2:

有两张各长20厘米的纸条,粘贴在一起后的总长是36厘米,

那么重叠部分长( )厘米。

A、2

B、4

C、8

D、16

解:

1、此题考查孩子的应用能力、运算能力。

孩子没有进行画图理解,只是凭自己的主观想象进行思考.

没有找到总长度与重复部分长度之间的关系,在后面计算时出现
错误。

2、两张纸条如果没有重叠,

那么一共长20+20=40(厘米),


而重叠后的长度是36厘米,短了40-36=4(厘米),

说明重叠部分的长度是4厘米。选择B。

例3:

某班在短跑、投 掷和跳远三项检测中,有4人三项都未达到优秀,
其他人至少有一项是优秀.

下表是得优秀的情况,这个班共有多少人?


解:

根据题意画图


2、我们可以先算出19+20+21=60(人),

但是这里有被重复算的和漏算的,我们要注意减去重复的部分,
加上漏算的部分。
< br>3、由图可知,6、9、10人都是两两重叠的部分,被多算了一次,
要减去:60-6-9-1 0=35(人),


但要注意,图中的3人,在计算19、20、21的和的时 候被加了
三次,在“-6-9-10”的时候又被减了三次,

那么相当于漏算了这3 人,所以我们应该将漏算的3人加上,
35+3=38(人),这38人是至少有一项达到优秀的人数。

算全班总人数,还需要加上三项都未达到优秀的4人。

所以共有38+4=42(人)。

初一拜年-上行宽带


失恋了-物流业务员


雪灾应急预案-作揖的读音


xiwang-手机网速慢怎么回事


微云同步盘-听妈妈讲那过去的事情吉他谱


十月一日放假-动态文字制作


土地承包经营权流转-初中音乐教学论文


举起手来电影-形容春天的四字词语