乘法公式与几何图形的练习(1)

绝世美人儿
548次浏览
2020年12月06日 06:56
最佳经验
本文由作者推荐

一日不见如隔三秋-中国企业推广

2020年12月6日发(作者:席煜)


乘法公式与几何图形的练习



1
、图①是一个长 为
2m
,宽为
2n
的长方形,沿图中虚线用剪刀平均分成四块小长
方 形,然后按图②的形状拼成一个正方形.



1
)图②中的阴影部分的面积为:



2
)观察图②,三个代数式(
m+n

2
,(
m-n

2

mn
之间的等量关系是:



3
)若
x+y=-6

xy=5
,则
x-y=


4
)观察图③,你能得到怎样的代数恒等式呢?


5< br>)试画出一个几何图形,使它的面积能表示(
m+n
)(
m+3n
)< br>=m
2
+4mn+3n
2





2
、阅读材料并回答问题:

我们知道,完全平方式可以用平面几何图形的面 积来表示,实际上还有一些代数恒
等式也可以用这种形式表示,如:(
2a+b
)(< br>a+b

=2a
2
+3ab+b
2
,就可以用图(< br>1

或图(
2
)等图形的面积表示.



1
)请写出图(
3
)所表示的代数恒等式:



2
)试画一个几何图形,使它的面积表示:(
a+b
)(
a+3b

=a
2
+4ab+3b
2





3
)请仿照上述方法另写一个含有
a

b的代数恒等式,并画出与它对应的几何图
形.


3
、(
1
)有若干块长方形和正方形硬纸片如图
1
所示.用若干 块这样的硬纸片拼成
一个新的长方形,如图
2



①用两种不同的方法,计算图
2
中长方形的面积;

②我们知道:同一个长方形的面积是确定的数值.由此,你可以得出的一个等式
为:


2
)有若干块长方形和正方形硬纸片如图
3
所示.请你用拼图等方 法推出一个完
全平方公式,画出你的拼图并说明推出的过程.





4.

1
)如图
1
,可以求出阴影部分的面积是 :(写成两数平方差的形式);


2
)如图
2
,若将阴影 部分裁剪下来,重新拼成一个矩形,它的宽是:

长是:

面积是:(写成多项式乘法的形式);


3
)比较图
1< br>、图
2
阴影部分的面积,可以得到公式


4
)运用你所得到的公式,计算下列各题:


10.2 ×9.8
,②(
2m+n-p
)(
2m-n+p
).



1
、如图
1
所示,边长为
a< br>的大正方形中有一个边长为
b
的小正方形,如图
2
是由
1
中阴影部分拼成的一个长方形.



1
)请你分别表示出这两个图形中阴影部分的面积:


2
)请问以上结果可以验证哪个乘法公式?


3
)试利用这个公式计算:
2012
2
-2013×2011



2
、会说话的图形.如下图,把正方形的方块,按不同的方式划分,计算 其面积,
便可得到不同的数学公式.按图
1
所示划分,计算面积,便得到一个公式:< br>

若按图
2
那样划分,大正方形则被划分成一个小正方形和两个梯形 ,通过计算图中
的面积,请你完成下面的填空.



1
)图
2
中大正方形的面积为:



2
)图
2
中两个梯形的面积为:


3
)根据(
1
)和(
2
),你得到的一个数学公式为:


3
、如图,在边长为
a
的正方形中剪去一个边长为
b
的小正方形( ),把剩下
部分拼成一个梯形,通过计算这两个图形阴影部分的面积,可验证公式为:


4
、如图:大正方形的边长为
a
,小正方形的边长为
b< br>,利用此图证明平方差公式.





5.< br>(
1
)如图
1
,可以求出阴影部分的面积是:(写成两数平方差的形式 );


2
)如图
2
,若将阴影部分裁剪下来,重新拼成一 个矩形,它的宽是:

长是:

面积是:(写成多项式乘法的形式);


3
)比较图
1< br>、图
2
阴影部分的面积,可以得到公式


4
)运用你所得到的公式,计算下列各题:


10.2 ×9.8
,②(
2m+n-p
)(
2m-n+p
).




6.如图,有一位狡猾的地主,把一块边长为a的正方形的土地,租给 李老汉种植,
他对李老汉说:“我把你这块地的一边减少4m,另一边增加4m,继续租给你,你
也没有吃亏,你看如何”.李老汉一听,觉得自己好像没有吃亏,就答应了.同学们,
你们觉得李老汉 有没有吃亏?请说明理由










7.如图是边长为a+2b的正方形

1
)边长为
a
的正方形有个,(
2
)边长为
b
的正方形有个,



3
)两边分别为
a

b
的矩形有个。



4
)用不同的形式表示边长为(
a+2b
)的正方 形面积,并进行比较写出你的结
论.






8
、图①是一个长为
2m
,宽为
2n
的长方形,沿图中虚线 用剪刀平均分成四块小长
方形,然后按图②的形状拼成一个正方形.



1
)图②中的阴影部分的面积为:



2
)观察图②,三个代数式(
m+n

2
,(
m-n

2

mn
之间的等量关系是:



3
)若
x+y=-6

xy=5
,则
x-y=


4
)观察图③,你能得到怎样的代数恒等式呢?


5< br>)试画出一个几何图形,使它的面积能表示(
m+n
)(
m+3n
)< br>=m
2
+4mn+3n
2






9
、阅读材料并回答问题:

我们知道,完全平方 式可以用平面几何图形的面积来表示,实际上还有一些代数恒
等式也可以用这种形式表示,如:(
2a+b
)(
a+b

=2a
2
+3ab+b
2
,就可以用图(
1

或图(
2
)等图形的面积表示.



1
)请写出图(
3
)所表示的代数恒等式:



2
)试画一个几何图形,使它的面积表示:(
a+b
)(
a+3b

=a
2
+4ab+3b
2




3
)请仿照上述方法另写一个含有
a

b
的代数 恒等式,并画出与它对应的几何图
形.





10



1
)有若干块长方形和正方形硬纸片如图
1
所示.用若干块这样的硬纸片拼成一
个新的长方形,如图
2



①用两种不同的方法,计算图
2
中长方形的面积;


②我们知道:同一个长方形的面积是确定的数值.由此,你可以得出的一个等式
为:



2
)有若干块长方形和正方形硬纸片如图
3
所示. 请你用拼图等方法推出一个完
全平方公式,画出你的拼图并说明推出的过
程.






lol雷恩加尔-初三主题班会教案


花雕鸡是什么地方的菜-广东交通大学


细菌世界历险记-英语6级分数线


lol猴子打野-透视表


海明威的老人与海-狗獾


晚会节目创意-我的文库


小儿补钙-第一滴泪简谱


笔记本风扇润滑油-5520