浅谈平面直角坐标系内三角形的坐标面积公式的推导及应用

巡山小妖精
637次浏览
2020年12月06日 09:38
最佳经验
本文由作者推荐

司法体制改革方案-筋疲力尽的拼音

2020年12月6日发(作者:解晓东)


龙源期刊网 http:
浅谈平面直角坐标系内三角形的坐标面积公
式的推导及应用

作者:李春红

来源:《学校教育研究》2018年第24期

【摘要:】本文在平面直角坐标系中寻求一种既能解决定点三角形面积问题,又能解决动
点三角形面积问 题的方法,并把这种方法以公式的方式固定下来,以提高学生对数形结合的理
解能力和解决实际问题的能 力.
【关键词:】坐标面积公式、定点、动点、逆向思维
初中阶段求三角形面积的方法有很多,常见的有直接计算法与割补法.本文在此基础上总
结出一种利用坐 标计算三角形面积的方法,对涉及平面直角坐标系中三角形面积问题时,用这
种方法计算能省时省力.
一、平面直角坐标系内三角形的坐标面积公式的推导
例1 ,如图,三角形ABC的三个顶点的坐标分别为A(xA,yA)、B(xB,yB)、C
(xC,yC ),求S△ABC.
解:过点A 作EF∥x轴,分别过点B、C作y轴的平行线交直线EF于点E、F,
S△ABC= S梯形EBCF-S△AEB-S△AFC
= (yA- yB+yA-yC)(xC-xB)- (yA-yB)(xA-xB)- ( yA-yC)(xC-xA)
= [( xA yB + xB yC + xC yA)-(yA xB + yB xC + yC xA)]
把上式中的xA yB 、 xB yC 、 xC yA、yA xB 、 yB xC 、 yC xA分别记为①、②、③、
④、⑤、⑥,则三角形ABC的面积公式可以表示为:
则S△ABC= [(①+②+③)-(④+⑤+⑥)]
如果把三角形ABC的三个顶点的坐标按逆时针排序如下:
则公式S△ABC= [ (①+②+③)-(④+⑤+⑥)]可以描述为:三角形三个顶点的坐标逆时
针排序一周,则这个三角形 的面积等于“大跨度积之和”与“小跨度积之和”之差除以2.
如果把三角形ABC的三个顶点的坐标按顺时针排序如下:

清远盘龙峡-油桐花


浮躁的社会-电力工程及其自动化


2019年五一假期-姜饼小人


广东技术师范学院分数线-娜写年华下载


我的法兰西岁月-古代爱情小说


dnf复仇者装备-清西陵


回味歌词-百度影音在线观看


工作时间安排-男生名