小学数学基础知识总结.doc

玛丽莲梦兔
992次浏览
2020年12月11日 01:23
最佳经验
本文由作者推荐

做菜技巧-春耕备耕情况汇报

2020年12月11日发(作者:贡布)


小学数学的基础知识、基本概念
自然数
用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……叫做自然数。
整数
自然数都是整数,整数不都是自然数。
小数
小数是特殊形式的分数。但是不能说小数就是分数。
混小数(带小数)
小数的整数部分不为零的小数叫混小数,也叫带小数。
纯小数
小数的整数部分为零的小数,叫做纯小数。
循环小数
小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:0.333……,
1. 2470470470……都是循环小数。
纯循环小数
循环节从十分位就开始的循环小数,叫做纯循环小数。例如:3, MEL混循环小数
与纯循环小数有唯-的区别:不是从十分位开始循环的循环小数,叫混循环小数。例如,MO, I i
有限小数
小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。
无限小数
小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都 是无限小数,无限小数
不一定都是循环小数。例如,圆周率兀也是无限小数。
分数
表示把-个“单位1”平均分成若干份,取其中的一份或几份的数,叫做分数。(分成。份在此不讨论)
真分数
分子比分母小的分数叫真分数。
假分数
分子比分母大,或者分子等于分母的分数叫做假分数。(分母、分子为零在此不讨论)
带分数
…个整数(零除外)和-个真分数组合在 起的数,叫做带分数。带分数也是假分数的另一种表示形式,相 互之
间可以互化。
关于 (n表示自然数)是否是分数
是分数,但不能用分数的意义去解释它,它既不属于真分数,也不属于假分数,而是一个特殊分数,叫零 分
数。
数与数字的区别
数字(也就是数码):是用来记数的符号,通常用国际通用 的阿拉伯数字0、9这十个数字。其他还有中国小 写
数字,大写数字,罗马数字等等。
数是由数字和数位组成。
0的意义
。既可以表示“没有”,也可以作为某些数量的界限。如温度等。。是-个完全有确定意义的数。
0是一个数。
0是一个偶数。
0是任何自然数(0除外)的倍数。
x


。有占位的作用。
0不能作除数。
0是中性数。 十进制


十进制计数法是世界各国常用的一种记数方法。特点是相邻两个单位之间的进 率都是十。10个较低的单 位
等于1个相邻的较高单位。常说“满十进-”,这种以“十”为基数的进位制,叫做十进制。
加法
把两个数合并成-个数的运算,叫做加法,其中两个数都叫“加数”,结果叫“和” O
减法
巳知两个加数的和与其中…个加数,求另…个加数的运算,叫做减法。减法是加法的逆运 算。其中“和”叫
“被减数”,已知的加数叫“减数”,求出的另一个加数叫“差” O
乘法
求n个相同加数的和的简便运算,叫做乘法。其中相同的这个数及n个这样的数都叫“因 数”,结果叫“积”
o
除法
已知两个因数的积与其中…个因数,求另…个因数的 运算,叫做除法。除法是乘法的逆运算。其中“积”叫
做“被除数”,已知的一个因数叫做“除数”,求出来的另一个因数叫做“商” O
加、减法的运算定律
加法交换律:两个数相加,交换两个加数的位置,和不变,叫做加法交换律。
加法结合律:三 个数相加,先把前二个数相加,再加第三个数,或者,先把后二个数相加,再加上第一个数, 其
和不变。这叫做加法结合律。
在减法中,被减数、减数同时加上或者减去一个数,差不变。
在减法中,被减数增加多少或者减少多少,减数不变,差随着增加或者减少多少。反之,减数增加多少或 者 减
少多少,被减数不变,差随着减少或者增加多少。
在减法中,被减数减去若干个减数,可以把这些减数先加,差不变。
乘、除法运算定律
乘法的交换律:两个数相乘,交换两个因数的位置,积不变。这叫做乘法的交换律。
乘法的结 合律:三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第…个 数
相乘,积不变。这叫做乘法结合律。
乘法分配律:两个数的和(或差)与…个数相乘,等于 把这两个数分别与这个数相乘,再把两个积相加(或 相
减)O这叫做乘法分配律。
乘法的其他运算定律
一个因数扩大若干倍,必须把另一个因数缩小相同的倍数,其积不变。
除法的运算定律一-商不变性质
两个数相除,被除数和除数同时扩大或者缩小相同的一个数(0除外),商的大小不变。
乘法的意义
一道乘法算式一般有下面几个意义:
一、 求几个相同加数的和是多少?例如:27X13,表示求13个27的和是多少?也可以表示求27的13倍是 多
少?
二、 求一个数的若干倍是多少?例如:27X0.3或者
除法的意义
一道除法算式,一般有下面几个意义:
1、 一个数里有几个除数。简称“包含除法”。例如,244-3表示24里面包含有几个3。
2、 一个数是另一个数的多少倍。例如:24!3,表示24是3的多少倍?
3、 把一个数平均分成若干份,每份是多少?简称“等分除法” o
例如:244-3,表示把24平均分成3份,每份是多少?
4、 已知一个数的几分之几是多少,求这个数。
例如: ,表示:已知一个数的三分之一是24,求这个数。
的意义:求27的十分之三是多少?


整除与除尽
整除:
甲数除以乙数(甲、乙为自然数),商是整数,余数为零。就说甲数能被乙数整除。
除尽:甲 数除以乙数(乙数不为零),商是有限数。就说甲数能被乙数除尽。


整除可以说是除尽, 但除尽就不能说一定叫整除。
例如:1!5 = 0.2,叫除尽,但不叫整除。因为商是小数。

104-3 = 3
如:104-3 = 3……1,既不叫整除,(因为余数不为零)也不叫除尽。
约数和倍数
当甲数能被乙数整除 时,就说甲数是乙数的倍数,乙数是甲数的约数。这两个概念都是相对而存在。-个自 然
数,不存在是 否倍数与约数。例如:“3是约数”,就是一个错误说法。只能是对3、6、9、……等数而言, 是
其中某个数的约数。
奇数与偶数
凡是能被2整除的数叫偶数,反之,不能被2整除的数叫奇数。
质数(素数)与合数
…个数的约数只有1和它本身的数叫做质数,也叫素数。反之,一个数的约数除了 1和它本身以外,还有其 他
的约数,这个数就叫合数。
1是否质数
由于1的约数只有1个,所以1既不是质数,也不是合数。
公约数
几个数公有的约数,叫做公约数。
它的个数是有限的,既有最大的,也有最小的。
互质数
两个数的公约数只有1,而没有其他公约数的,这两个数就叫互质数。
质数与互质数
这两个概念没有什么联系。两个质数,不能肯定就是互质数。只有两个不相同的 质数,才能肯定是互质数。 另
外,两个合数既可能是互质数,也可能不是互质数,但不能说两个合数•-定不是互质数。
质因数
把-个合数分解成几个质数相乘的形式,这样的质数叫做质因数。
分解质因数
把一个合数分解成几个质数相同的形式,就叫做分解质因数。
公倍数
几个数公有的倍数,叫做公倍数。它的个数是无限的,只有最小的,没有最大的。
I
=
I

最大公约数
最小公倍数
几个数公有的无限个倍数中,最小的一个,就叫做这几个数的最小公倍数。
几个数公有的约数中,最大的一个就叫做这几个数的最大公约数。
l=J
*
能被2整除的判断方法
一个数能否被2整除,只要看这个数的末尾是否有0、2、4、6、8这五个数的其中一个即可。
能被5整除的判断方法
一个数能否被5整除,只要看这个数的末尾是否有0、5这两个数的其中一个即可。
能被3整除的判断方法
一个数能否被3整除,只要看这个数的各个数位上的数字和能否被3整除。
分数单位
分子为1,分母不为零的真分数,就叫这个分数的分数单位。例如:
数单位。又如
分数化有限小数的判断方法
一个分数能否化成有限小数,主要看分母(这里的分数•定是最简分数)是不是只有质因数“2或5”
o
掺杂 任何
其他质因数,都不能化成有限小数,反之,就-定能化成有限小数。例如: 、 、 等都能化
的分数单位是 ,它有7个这样的分
的分数单位是 ,它有13个这样的分数单位(将带分数化成假分数)o


成有限小数。 、 、 都不能化成有限小数。
分数没有基本单位
不同的分数,有不同的分数单位。没有一个共同的 标准量,就没有基本单位。


分数的基本性质
一个分数的分子、分母同时乘上或除以相同的数(零除外),分数的大小不变,这叫分数的基本性质。
分数的通分、约分
通分:把几个单位不同的分数,化成相同单位,且大小不变的分数,叫做通分。
约分:把-个分数化成同它相等的,分子、分母较小的分数,叫做约分。
百分数
表 示…个数是另…个数的百分之几的数,叫做百分数。百分数又叫百分率或百分比。百分数是特殊分数。特 征
是分母为100,采用符号“%”(叫做百分号)来表示。分子可以是整数,也可以是小数。
百分率
两个相同量的比的比值,用百分数和的形式表示时,这个比值叫做这两个量的百分率, 也叫百分比。通常的
“XX率”就是百分数。如“出勤率”等。
准确数与近似数(近似值)
与实际情况完全符合的数,叫做准确数。
与实际情况接近而有一定误差的数,叫做近似数(或叫近似值)O
名数与不名数
量数与计量单位名称合起来叫做名数。例如:7米、18千克、9时25分等都叫名数。
没有带单位名称的数,叫做不名数。如2、4、6、8等,都叫不名数。
单名数与复名数
只含有一个计量单位名称的名数叫做单名数。例如7米、18千克等都叫做单名数。
含有两个 或者两个以上的同类计量单位名称的名数,叫做复名数。例如:2米3分米5厘米,8小时33分,8 吨
8千克等都叫复名数。
高级单位与低级单位
计量单位较大的叫做高级单位,计量 单位较小的叫做低级单位。高、低级单位是相对的,没有单个的高、低 级
单位的名数。
公历年的平年、闰年
平年:把公历年份除以4 (这里不是整百的公历年份)有余数时,就把这一年叫做平年,计365天。其中二 月
份有28天。
闰年:把公历年份除以4 (这里不是整百的公历年份)余数为零时,就把这年叫做闰年,计366天。其中 二月
份有29天。如果年份是整百的,则除以400,再看余数。
时刻与时间
时刻 表示一天内某一个特指的时候,例如上午8时30分开会,这里的“8时30分”这是时刻。时间表示两 个是
期或两个时刻的间隔。例如,做作业用去30分钟,这里的“30分钟”就是时间。
比和比值
比:两个数相除,叫做两个数的比。•-般地汽数a除以b (b尹0)就叫做a与b的比,记作a:b
o
也可以用分 数
形式表示为 。
比值:比的前项除以后项所得的商,叫做比值。
比和比值有本质的不同。如 既可看作是比,又可看作是比值。如果化成
比的化简
把一个比化为最好简整数比,叫做比的化简。一般情况下,化简以后的比,前后两项为互质数。
比例
表示两个比相等的式子叫做比例。
正比例
两种相关联的量,一种量 变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)
,则只能表示为比值。


一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。用字母表示:
反比例
(一定)
两种相关联的量,…种量变化,另-种量也随着变化,如果这两种 量中相对应的两个数的积-定,这两种量 就叫
做成反比例的量,它们的关系叫做反比例关系。用字母表示: (一定)


直线:没有端点,可以向两端无限延长。
射线:只有一个端点。可以向一端无限延长。
线段:有两个端点。射线和线段都是直线的一部分。
两点之间,线段最短。
垂线、垂足
两条直线相交,有…个角是直角时,就说这两条直线互相垂直。其中一条直线叫做 另一条直线的垂线,其交 点
叫垂足。从直线外一点到直线所画的线段中,垂线最短。
角:

锐角(小于90°的角)、直角(等于90°的角)、钝角(大于90°而小于 180°的角)、平角(等于180°的
角)、
周角(等于360°的角)
平行线
在同一平面内的两条不相交的直线,叫做平行线。
1:1
面积是用来表示一个物体的表面或者平面的大小。
地积就是土地的面积。
体积和容积(容量)
体积:用来表示物体所占空间的大小,叫做体积。
容积:一个容器所能容纳物体的体积,叫做容积或容量。
二、必背定义、定理公式
三角形的面积=底乂高!2。公式S= aXh4-2
正方形的面积=边长X边长 公式S二aXa
长方形的面积=长、宽公式S二aXb
平行四边形的面积=底乂高 公式S二aXh
梯形的面积=(上底+下底)X高《2公式S二(a+b)h!2
内角和:三角形的内角和= 180度。
长方体的体积=长乂宽X高公式:V=abh
长方体(或正方体)的体积=底面积X高 公式:V=abh
正方体的体积=棱长乂棱长X棱长公式:V=aaa
圆的周长=直径X兀公式:L=Jid = 2nr
圆的面积=半径X半径
X
JT
公式:S=nr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S二ch=Jidh = 2Jirh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch +2s二ch+2兀「2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V二Sh
圆锥的体积=13底面X积高。公式:V二l3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分, 然
后再加减。
分数的乘法则:用分子的积做分子,用分•母的积做分•母。
分数的除法则:除以一个数等于乘以这个数的倒数。
三、读懂理解会应用以下定义定理性质公式
(一)、算术方面


1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个 数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。


3、乘 法交换律:两数相乘,交换因数的位置,根不变。
4、 乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积 不
变。
5、 乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果 不
变。如:(2+4) X5=2X5+4X5
6、 除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0 的
数都得0。
简便乘法:被乘数、乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下, 添
在积的末尾。
7、 么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、 什么叫方程式?答:含有未知数的等式叫方程式。
9、 什么叫一元一次方程式?
答:
含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程 式。
学会一元一次方程式的例法及计算。即例出代有x的算式并计算。
10、 分数:把单位&qu()t; l";平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、 分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通
分,然后再加减。
12、 分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分 然
后再比较;若分子相同,分母大的反而小。
13、 分数乘整数,用分数的分子和整数相乘的积作分子,分•母不变。
14、 分数乘分数,用分子相乘的积作分子,分母相乘的积作为分•母。
15、 分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、 真分数:分子比分母小的分数叫做真分数。
17、 假分数:分子比分母大或者分子和分•母相等的分数叫做假分数。假分数大于或等于1。
18、 带分数:把假分数写成整数和真分数的形式,叫做带分数。


19、分数的基本性质:分 数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。


20、一个数除 以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
(二)、数量关系计算公式方面
1、 单价X数量=总价
2、 单产量X数量=总产量
3、 速度X时间=路程
4、 工效X时间=工作总量
5、 加数+加数=和一个加数=和+另一个加数
被减数一减数=差减数=被减数一差被减数=减数+差
因数x因数=积一个因数=积:另一个因数
被除数:除数=商除数=被除数:商被除数=商乂除数
有余数的除法:被除数=商乂除数+余数
一•个数连续用两个数除,可以先把后两个数相乘, 再用它们的积去除这个数,结果不变。例:
5X6)
6、 1公里=1千米1千米= 1000米
1米=10分米1分米=10厘米1厘米=10毫米
1平方米= 100平方分米1平方分米= 100平方厘米
1平方厘米= 100平方毫米
1立方米= 1000立方分米1立方分米= 1000立方厘米
1立方厘米= 1000立方毫米
1吨=1000千克1千克二1000克二1公斤二1市斤
1公顷= 10000平方米。1亩= 666.666平方米。
1升=1立方分米= 1000毫升1毫升=1立方厘米
9095^6 = 90!


7、 什么叫比:两个数相除就叫做两个数的比。如:24-5或3:6或13
比的前项和后项同肘乘以或除以一•个相同的数(0除外),比值不变。


8、 什么叫比例:表示两个比相等的式子叫做比例。如3:6 = 9:18
9、 比例的基本性质:在比例里,两外项之积等于两内项之积。
10、 解比例:求比例中的未知项,叫做解比例。如3: x =9:18
11、 正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也 就
是商k) 一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:yx=k(k 一定)或kx=y
12、 反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的 积
一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:xXy = k(k一定)或kx二y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、 把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分
数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、 把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分
数。 其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、 要学会把小数化成分数和把分数化成小数的化发。
16、最大公约数:几个数都能被同一个数一次性整 除,这个数就叫做这几个数的最大公约数。(或几个数公有
的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、 互质数:公约数只有1的两个数,叫做互质数。
18、 最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公 倍
数。
19、 通分:把异分•母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、 约分:把一个分数化成同它相等,但分子、分•母都比较小的分数,叫做约分。(约分用最大公约数)
21、 最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除 ,即能用2进行约分。个位上是0或者5的数,都能被5 整
除,即能用5进行约分。在约分时应注意利用。


22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、 质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、 合数:一个数,如果除了 1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、 利息=本金X利率X时间(时间一般以年或月为单位,应与利率的单位相对应)
29、 利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比 值
叫做月利率。
30、 自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
31、 循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样 的
数叫做循环小数。如3. 141414
32、 不循环小数:一个小数,从小数部分起, 没有一个数字或几个数字依次不断的重复出现,这样的小
叫做不循环小数。
如 3. 141592654
33、 无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或 几个数字依次不断的重复
现,这样的小数叫做无限不循环小数。如3. 141592654……
34、 什么叫代数?代数就是用字母代替数。
35、 什么叫代数式?用字母表示的式子叫做代数式。如:3x=ab+c
(三)、一般运算规则
1每份数
X
份数=总数总数4■每份数=
份数总数X份数=每份数

2 1倍数X倍数=几倍数几倍数倍数=倍数几倍数:倍数=1倍数
3速度X时间=路程路程:速度=时间路程:时间=速度
4单价X数量=总价总价:单价=数量总价:数量=单价
5工作效率X工作时间=工作总量工作总量:工作效率=工作时间工作总量:工作时间=工作效率
6加数+加数=和和 ------- 个加数=另一个加数
7被减数一减数=差被减数一差=减数差+减数=被减数
8因数X因数=积积一个因数=另一个因数






9被除数:除数=商被除数:商=除数商X除数=被除数
四、小学数学图形计算公式


1正方形C周长S面积a边长
周长=边长X4 C=4a
面积二边长X边长S=aXa
2正方体V:体积a:棱长
表面积二棱长X棱长X6 S表二aXaX6
体积二棱长X棱长X棱长V=a X a X a
3长方形C周长S面积a边长
周长二(长+宽)X2 C=2(a+b)
面积二长X宽S=ab
4长方体V:体积s:面积a:长b:宽h:高
表面积(长X宽+长X高+宽X高)X 2 S二2 (ab+ah+bh)
体积二长X宽X高V=abh
5三角形s面积a底h高
面积二底X高《2 s=ah《2
三角形高二面积X2!底三角形底二面积X24-高
6平行四边形s面积a底h高
面积=底乂局s—ah
7梯形s面积a上底b下底h高
面积=(上底+下底)X高十2 s= (a+b) X h似2
8圆形S面积C周长n d二直径r二半径
周长二直径xn-2xnx半径c=rid=2口「


面积二半径x半径xn
9圆柱体v:体积h:高s;底面积r:底面半径c:底面周长
侧面积二底面周长X高表面积二侧面积+底面积X 2


体积二底面积X高体积=侧面积:2 X半径
10圆锥体v:体积h:高s;底面积r:底面半径
体积二底面积X高:3

北岛我不相信-衡水湖图片


qq农场刷金币-玩游戏什么笔记本好


羽毛球团体赛规则-usb无法识别怎么办


假如给我三天光明简介-阕声云舵


留学的利弊-关于两会


迷离-接待就是生产力


银耳莲子汤做法-狂蓉你听着


五谷豆浆食谱-qq通讯录云端