四年级数学鸡兔同笼问题与假设法

余年寄山水
764次浏览
2020年12月11日 18:09
最佳经验
本文由作者推荐

日本动漫电影排行榜-描写鸟的诗句

2020年12月11日发(作者:方旋)



第13讲 鸡兔同笼问题与假设法
鸡兔同笼问题是按照题目的内容涉及 到鸡与兔而命名的,它是一类有
名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加
以计算。
例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅
家的鸡与兔各有多少只?
分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实
际上有44只脚,比假设的情况 多了44-32=12(只)脚,出现这种情况
的原因是把兔当作鸡了。如果我们以同样数量的兔去换同 样数量的鸡,那
么每换一只,头的数目不变,脚数增加了2只。因此只要算出12里面有
几个2 ,就可以求出兔的只数。
解:有兔(44-2×16)÷(4-2)=6(只),
有鸡16-6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设1 6只都是兔子,那么就应该有4×16=64(只)
脚,但实际上有44只脚,比假设的情况少了64- 44=20(只)脚,这是
因为把鸡当作兔了。我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。因此只要算出20里面有几个2,就可以求出鸡的只
数。
有鸡(4×16-44)÷(4-2)=10(只),
有兔16——10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,
然后以兔换鸡;也可以先假设都是 兔,然后以鸡换兔。因此这类问题也叫
置换问题。
例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?
分析与解:本题由中国古算名题“百僧分馍问题”演变而得。如果将大和
尚、小和尚分别看作鸡 和兔,馍看作腿,那么就成了鸡兔同笼问题,可以
用假设法来解。
假设100人全是大和 尚,那么共需馍300个,比实际多300-140=
160(个)。现在以小和尚去换大和尚,每换一 个总人数不变,而馍就要
减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚 有

1



100-80=20(人)。
同样,也可以假设100人都是小和尚,同学们不妨自己试试。
在下面的例题中,我们只给出一种假设方法。
例3 彩色文化用品每套19元,普通文化用品每套11 元,这两种文化用
品共买了16套,用钱280元。问:两种文化用品各买了多少套?
分析与 解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有
1个头19只脚,它们共有16个头, 280只脚。这样,就将买文化用品问
题转换成鸡兔同笼问题了。
假设买了16套彩色文 化用品,则共需19×16=304(元),比实际
多304——280=24(元),现在用普通文化 用品去换彩色文化用品,每
换一套少用19——11=8(元),所以
买普通文化用品 24÷8=3(套),
买彩色文化用品 16-3=13(套)。
例4 鸡、兔共100只,鸡脚比兔脚多20只。问:鸡、兔各多少只?
分析:假设100只都是鸡,没 有兔,那么就有鸡脚200只,而兔的脚
数为零。这样鸡脚比兔脚多200只,而实际上只多20只,这 说明假设的
鸡脚比兔脚多的数比实际上多200——20=180(只)。
现在以兔换鸡 ,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比
兔脚多的脚数中就会减少4+2=6(只),而1 80÷6=30,因此有兔子
30只,鸡100——30=70(只)。
解:有兔(2×100——20)÷(2+4)=30(只),
有鸡100——30=70(只)。
答:有鸡70只,兔30只。
例5 现有大、小油 瓶共50个,每个大瓶可装油4千克,每个小瓶可装油
2千克,大瓶比小瓶共多装20千克。问:大、小 瓶各有多少个?
分析:本题与例4非常类似,仿照例4的解法即可。
解:小瓶有(4×50-20)÷(4+2)=30(个),
大瓶有50-30=20(个)。

2



答:有大瓶20个,小瓶30个。
例6 一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆 。已知
每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?
分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装
多少吨。
利用假设法 ,假设只用36辆小卡车来装载这批钢材,因为每辆大卡
车比每辆小卡车多装4吨,所以要剩下4×36 =144(吨)。根据条件,要
装完这144吨钢材还需要45-36=9(辆)小卡车。这样每辆小卡 车能装144
÷9=16(吨)。由此可求出这批钢材有多少吨。
解:4×36÷(45-36)×45=720(吨)。
答:这批钢材有720吨。
例7 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24
元,但如果发生 损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26
元,结果搬运站共得运费115.5元。问 :搬运过程中共打破了几只花瓶?
分析:假设500只花瓶在搬运过程中一只也没有打破,那么应 得运费
0.24×500=120(元)。实际上只得到115.5元,少得120-115.5=4. 5(元)。
搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。因此共打破花瓶
4.5÷1.5=3(只)。
解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。
答:共打破3只花瓶。
例8 小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。已知小喜比小乐每分钟多跳12下,那么小喜比小乐共
多跳了多少下?
分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两
人跳的总数减少了
12×(2+3)=60(下)。
可求出小乐每分钟跳
(780——60)÷(2+3+3)=90(下),
小乐一共跳了90×3=270(下),因此小喜比小乐共多跳
780——270×2=240(下)。

3

澳洲探亲-龙门石窟在哪个省


计算机系统维护-山水诗歌


离别的诗句-如何使用打印机


dota蓝猫出装-papillon


空巢老人产生的原因-花团锦簇造句


潮汕文化-魔兽魔方


深圳市房屋租赁-突发事件的应急预案


云南西双版纳-喜羊羊和灰太狼图片