第十六届华杯赛决赛试题及答案(小学组A卷、B卷)

别妄想泡我
662次浏览
2020年12月13日 02:04
最佳经验
本文由作者推荐

茫茫人海中有你有我-小米恢复出厂设置

2020年12月13日发(作者:柏扬)




答案:
1. 原式=(2+4+6+8)-(12+14+16+18)=20-(1+124)=18+2324。
2. 8个人用30天完成了工程的13,那么8个人完成剩余工程(23)应该用60天,
增加4个人变成12个,应该用60÷12×8=40天,共用70天。
3. 甲乙的速度比为6:5,乙提速后的速度为5×1.6=8份。假设乙耽误的时间也在
以5的速度前进,则乙总共可以前进全程的76。也就是说相当于乙在用甲的速度
的56和86两种速度来骑甲的76的路程,根据十字相乘法,两种速度所用的时间
之比为1:2。也就是说,乙用56的速度行驶了56×13=518的路程,那么全程的
518-16=19就是5千米,全程45千米。
4. 因为35分20秒比一小时的35(36分钟)小一点,所以时针没有超过9后面的第
三个刻度线(即48分的刻度线);而分针在35分和36分之间。因此,两针所夹的
锐角内有36分~47分的刻度线,共47-36+1=12条。
5. △FAB是等边三角形,所以弧AF是六分之一圆,同理弧GC也是六分之一圆,则
弧GF是16+16-14=112圆,四条弧是13圆,长度为2×π×1÷3=2.094。
6. 每种先都减去1本,剩余40-2-5-11=22元。
如果再买2本11元的,恰好用完,1种方法;
如果再买1本11元的,剩余11元,可以买1本5元和3本2元,1种方法;
如果不再买11元的,22元最多买4本5元的,5元的本数可以是4,2,0,3种方法。
共有1+1+3=5种方法。
7. 该几何体是一个四棱锥,底面积为20×20=400,高为20,所以体积为
400×20÷3=80003(立方厘米)。
8. 大于11的质数13,17,19都只能作为分母为1的数的分母,如果它们作为同一
个分数的分子和分母,则剩余的10个可以都是整数。下面举例说明可以只有一个


不是整数:
131 2211 2010 189 168 147 155 213 42 126 1917
共10个是整数。
9. 本题很类似另一个长方形和正方形的题。长方形的面积等于△ADF的2倍,如果
能说明梯形的面积也等于△ADF的2倍,则梯形的面积也等于2011平方厘米。
过D作DH∥AF交FG于H,把△DGH剪下来,DG边和DE边拼起来,因为∠E和∠G加起来
等于180°,所以可以拼成一个平行四边形,它和△ADF同底(AF)同高,所以面
积是△ADF的2倍。
10. 如果坏的两根就是本来不亮的,是351;
如果只有百位的不是3,则百位最多坏两根,可能是951或851;
如果只有十位的不是5,则十位最多坏两根,可能是361,391或381;
如果只有个位的不是1,则个位最多坏两根,可能是357或354;
如果百位十位都是错的,则这两位各坏一根,可能是961或991;
如果百位个位都是错的,则这两位各坏一根,可能是957;
如果十位个位都是错的,则这两位各坏一根,可能是367或397。
综上所述,可能是35 1,354,357,361,367,381,391,397,851,951,957,
961,991。共13种可能性。
11. 星期数相同且奇偶性相同,则相差14天。
如果是1号,15号,29号是星期日,则20号是星期五;
如果是3号,17号,31号是星期日,则20号是星期三;
一个月最多31天,所以不能再往下讨论了。
12. 这个加法算式中,从第一个大于0的项开始,依次有15个1,15个2,……
如果15(1+2+3 +...+n)>2011,则1+2+3+...+n至少为135,也就是说n(n+1)至少为
270,n至少为16。
15(1+2+3+...+16)=2040,减去一个16为2 024,仍大于2011,再减去一个16为2008,
小于2011了。所以最多减去一个16,还有14个16,n至少为15×16+14-1=253。
13. 显然华=1。根据弃九法,5不能出现。则0+1+2+3+4+6+7+8+9=40,2+0+1+1=4,
减少了36=4×9,所以共进4位。百位肯定向千位进1位,下面就十位和个位的进位
情况讨论:
如果十位向百位进2,个位向十位进1,则百位数字之和为8,十位数字之和为20,
个位数字之和为11。剩余的数字0,2,3,4,6,7,8,9可能的分组方法如下:
( 0+8),(4+7+9),(2+3+6);(2+6),(3+8+9),(0+4+7);(2+6),( 4+7+9),(0+3+8)。
注意0不能放在首位,所以共有1×6×6+2×6×6+2×6×6=180种。
如果十位向百位进1,个位向十位进2,则百位数字之和为9,十位数字之和为9,
个位数字之和为21。剩余的数字0,2,3,4,6,7,8,9可能的分组方法如下:
( 0+9),(2+3+4),(6+7+8);(2+7),(0+3+6),(4+8+9);(3+6),( 0+2+7),(4+8+9)。
注意0不能放在首位,所以共有1×6×6+2×4×6+2×4×6=132种。
综上所述,共180+132=312种。
14. 根据奇偶性,如果蜘蛛和爬虫都不停移动,则蜘蛛有可能永远抓不住爬虫。
那么,两只蜘蛛一开始的时候应该选择不懂。根据对称性,不妨设爬虫第一步移
动到了F。
⑴如果蜘蛛预知爬虫下一步移动到E或B,则蜘蛛也朝着该棱移动就行了。


⑵ 如果蜘蛛预知爬虫下一步移动到G,则一只移动到E,一只移动到B。无论爬虫下一步移动
到F,H,C 中的哪个,总有一只蜘蛛可以移动到相应的顶点,爬虫就自投罗网了。



第十六届华罗庚金杯少年数学邀请赛决赛试题B(小学
组)




参考答案:1. 27又43120; 2.20; 3. 15;4. 43; 5. 4; 6. 7;
7.10003; 8.17; 9.416; 10.62; 11.1111,1212,2424,3636,1515; 12.3344;
13.10a9,a+1,50;14.100

冰淇淋车-beelzebub


2017年国庆-虹桥中园


记承天寺夜游练习题-麂属


2019年中央电视台春节联欢晚会-《我们》


郑板桥竹子诗-山东高考专科分数线


羞答答的玫瑰歌词-环卫工人图片


闭嘴英语-电脑没声音怎么办


高考人数下降-网络旅游