新北师大版数学小学六年级下册《比例的应用》公开课优质课教案

萌到你眼炸
690次浏览
2020年12月15日 19:42
最佳经验
本文由作者推荐

看的最远的地方歌词-再打一字

2020年12月15日发(作者:韩垂)


《比例的应用》教案
教学内容
本内容是六年级下册第19,20页“比例的应用”。
设计背景
本节课主要是结合 解决问题的过程学习解比例。它是在学生掌握了比例的意义、比例的基
本性质的基础上进行学习的。四年 级时已经学习过用等式性质解方程,也是本节课的重要学习
基础。这节课的学习既要帮助学生经历“问题 情境—建立模型—解释应用”的思维过程,也要
引导学生理解“根据比例的意义写出比例,根据‘两个内 项的积等于两个外项的积’和等式的
性质解方程”。
“物物交换”是人类使用货币的开端。“ 物物交换”的情境蕴含着按一定的比例交换的数
学关系。教科书通过创设“物物交换”的情境,引导学生 用多种方法解决问题,体会解决问题
方法的多样性。在解决问题的过程中列出含有未知数的比例,再次呈 现学生多样化的思考,并
自主探索解比例的方法。在此基础上理解根据“两个内项的积等于两个外项的积 ”求比例中的
未知项,会正确解比例。整节课“寓算于用”,在问题解决过程中产生新知、学习新知、掌 握
新知,提高了综合运用知识解决问题的能力。
学习目标
1.经历用多种方法解决 “物物交换”问题的过程,体会解决问题方法的多样性,提高综
合运用知识解决问题的能力。
2.在解决问题的过程中列出含有未知数的比例,并自主探索解比例的方法,理解根据“两
个内项的积等 于两个外项的积”求比例中的未知项,会正确解比例。
教具准备


练习本、课件。
过程预设
活动(一)“物物交换”,提出问题。
1.介绍“物物交换”的背景知识。
人类使用货币的历史产生于最早出现物质交换的时代。在 原始社会,人们使用“以物易物”
的方式,交换自己所需要的物资,比如用一头羊换一把石斧。我们今天 所学的数学知识就从“物
物交换”开始。
2.呈现问题情境,引导学生读懂题意,并尝试提出问题。
即:淘气已知4个玩具汽车可以换 10本小人书,小明有14个玩具汽车,可以换多少本小
人书?
活动(二)尝试解决,体会联系。
1.14个玩具汽车可以换多少本小人书?把你的想法记录在草稿本上。
2.交流各自的想法 ,体会“物物交换”过程中。玩具汽车数量与小人书数量之间存在的
比例关系。
学习成果预设,学生可能会出现四种思考方法。
方法一:14÷4=3.5,3.5x10=35(本)。
方法二:10÷2=5(本),14÷2=7,5x7=35(本)。
方法三:4个玩具汽车=10本小人书,14÷4=3……2(个),
2个玩具汽车=5本小人书,10x3+5=35(本)。
方法四:4个玩具汽车=10本小人书,8个玩具汽车=20本小人书,
12个玩具汽车=30本,2个玩具汽车=5本,
12+2=14(个),30+5=35(本)。


3.请学生介绍每种方法的 思考过程,并强调尽管思路不同,但各种方法都围绕玩具汽车
个数与小人书本数之间的比例关系而展开。
活动(三)引进新知,拓展策略。
1.教师引导:假设14个玩具汽车可以换x本小人书,同 学们能否根据题意列出比例?并
说说你是根据哪两句话写出比例的,你是怎么想的?
2.学生尝试列式,并说说写出比例的主要根据。
学习成果预设:学生可能会出现四种思考方法:
方法一:4:10=14:x。
方法二:10:4=x:14。
方法三:14:4=x:10。
方法四:4:14=10:x。
3.教师启发学生思考:列出比例的主要根据是什么?主要是 “4个玩具汽车可以换10本
小人书,假设14个玩具汽车可以换戈本小人书”这两句话。
这 几种方法有什么特征呢?学生的想法可能是两句话中玩具汽车与小人书之间存在相同
的比例关系,也可能 是前后玩具汽车个数的倍数关系与前后小人书本数的倍数关系是一致的。
写成比例的形式就是汽车1:书 1=汽车2:书2或汽车1:汽车2=书1:书2。
4.学生独立解比例。
4:10=14:x 10:4=x:14 10:4=x:14 4:14=10:x
解:4x=140 解:4x=140 解:4x=140 解:4x=140
x=35 x=35 x=35 x=35
答:14个玩具汽车可以换35本小人书。
教师重点追问,不管哪种思路都能转化 出“4x=140”,这一步的根据是什么,让学生体会


运用“两个内项的积等于两个外 项的积”求比例中的未知项。
活动(四)专项练习,巩固新知。
1.出示题目,学生独立尝试解比例。
解下面的比例,与同伴交流。
24:0.3=x:0.4
2.组织交流。第一小题说出每一步骤的依 据,再次明确根据“两个内项的积等于两个外
项的积”转化成方程解决。第二小题写成分数形式的比例求 解时,可以引导学生发现“内项的
积、外项的积”实际上只要“对角两个数相乘”即可。然后,再引导学 生把戈的值代入比例进
行验算。
3.教师小结解比例的基本方法:关键是根据“内项的积等于 外项的积”写成等式,再用
等式的性质解方程。
活动(五)课堂作业,深化认识。
第1题
1.学生独立审题,完成两个小题。
2.学生汇报解题思路。学生不管怎样变换思路,都要清楚列出的比例是否合理。
6:2=15:x,x=5。
该题鼓励学生结合情境再次经历自己尝试解决问题、利用比例的知识解决问题的过程。
第2题
1.让学生根据情境直接写出比例,并求未知数;
(1)1:4=x:84,x=21; (2)4:10=x:250,x=100。
2.反馈时,教师改变其中一个比的前、后项,让学生辨 析是否合理,进一步明晰列比例
时要符合比例的意义。


第3题
解比例的基本练习,强调转化成方程的依据以及验算的方法。
(1)x=1.6 (2)x=6 (3)x=
第4,5题是让学生用比例解决简单的实际问题,先要假设,再根据题意列出比例。
第4题第5题
解:设笑笑收集的邮票有x张。 解:设模型的高度是xm。
3:5=36:x 1:300=x:600
x=60 x=2
活动(六)回顾梳理,总结收获。
今天这节数学课,大家通过自己的努力,掌握了哪些新知识?还有什么疑问吗?
实施要求
1.将解比例的学习融人问题解决过程中,体会解决问题方法的多样性。
本节课主要学习解比 例的方法,但没有纯粹地为了学方法而教方法。而是创设了学生比较
喜欢的“物物交换”问题情境激发思 考,在学生经历多种方法解决问题之后再介绍用比例的方
法来解决。新知在学生体会多样化解决问题的过 程中得以“生长”。为此,要安排一定时间让
学生尝试用自己的方法解决问题,更要有足够的时间让学生 理解根据哪几句话列出比例,这样
的比例又是怎么想到的,“理”说清了,“法”也就自然生成。
2.解比例的前提是正确列出比例,关键是“比例中两个内项的积等于两个外项的积”的
应用。
将解比例与问题解决相结合,前提就是学生能否正确列出比例。之后解比例的关键是“两
个内项 的积等于两个外项的积”的应用。教师要加强学生的说理训练,不管是比的形式还是分
数的形式,都要讲 清楚根据什么将含有未知数的比例转化为方程。完成解答后,还要加强代人


法验算能力的 培养,提高计算的正确率。另外,教师要注意自己出题时要明确两个比是相等的,
不需要学生先判断两个 比是否相等的过程。

军转干部-太阳西边下月亮东边挂打一字谜


女人好犀利-海空天空


上海个人租房-清源山


团购车-语重心长造句


网络运营模式-女生节的由来


广告印刷-纳兰容若词传


春光满校园-记性不好怎么办


跨年晚会节目单-广州上学网