七年级学习数学流水行船问题的公式和例题
手机开钻-美男图片
小学数学公式中流水的问题是最容易的一个题型,今天我们给大家总结了以下流水问题的公式。
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
关于学习数学流水行船问题的公式和例题
流水问题是研究船在流水中的行程问题,因此,
又叫行船问题。在
小学数学中涉及到的题目,一般是匀速运动的问题。这类问题的主要
特点是,
水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:
顺水速度=船速+水速 (1)
逆水速度=船速-水速
(2)
这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速
是指船本身的速度
,也就是船在静水中单位时间里所行的路程;水速
是指水在单位时间里流过的路程。
公式
(1)表明,船顺水航行时的速度等于它在静水中的速度与水
流速度之和。这是因为顺水时,船一方面按
自己在静水中的速度在水
面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面
的
实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水
流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:
水速=顺水速度-船速
(3)
船速=顺水速度-水速 (4)
由公式(2)可得:
水速=船速-逆水速度 (5)
船速=逆水速度+水速
(6)
这就是说,只要知道了船在静水中的速度、船的实际速度和水速这
三者中的任意两个
,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和
水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,
根据和差问题的算法
,可知:
船速=(顺水速度+逆水速度)÷2 (7)
这就是说,只要知道了船在静
水中的速度、船的实际速度和水速这
三者中的任意两个,就可以求出第三个。
另外,已知
某船的逆水速度和顺水速度,还可以求出船速和水
速。因为顺水速度就是船速与水速之和,逆水速度就是
船速与水速之
差,根据和差问题的算法,可知:
船速=(顺水速度+逆水速度)÷2
(7)
水速=(顺水速度-逆水速度)÷2 (8)
*例1 一只渔船顺水
行25千米,用了5小时,水流的速度是
每小时1千米。此船在静水中的速度是多少?(适于高年级程度
)
解:此船的顺水速度是: 25÷5=5(千米小时)
因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水
速度-水速”。
5-1=4(千米小时)
综合算式: 25÷5-1=4(千米小时)
答:此船在静水中每小时行4千米。
*例2 一只渔船在静水中每小时航行4千米,逆水4小时航行1
2千米。
水流的速度是每小时多少千米?(适于高年级程度)
解:此船在逆水中的速度是:12÷4=3(千米小时)
因为逆水速度=船速-
水速,所以水速=船速-逆水速度,即:4-3=1(千
米小时)
答:水流速度是每小时1千米。
*例3 一只船,顺水每小时行20千米,逆水每小时行
12千米。
这只船在静水中的速度和水流的速度各是多少?(适于高年级程度)
解:因为船在静水中的速度=(顺水速度+逆水速度)÷2,所以,这
只船在静水中的速度是:
(20+12)÷2=16(千米小时)
因为水流的速度=(顺水速度-
逆水速度)÷2,所以水流的速度是:
(20-12)÷2=4(千米小时)
答略。
*例4 某船在静水中每小时行18千米,水流速度是每小时2
千米。此船从甲地逆水航行
到乙地需要15小时。求甲、乙两地的路程
是多少千米?此船从乙地回到甲地需要多少小时?(适于高年
级程度)
解:此船逆水航行的速度是:18-2=16(千米小时)
甲乙两地的路程是:16×15=240(千米)
此船顺水航行的速度是:18+2=20(千米小时)
此船从乙地回到甲地需要的时间是:240÷20=12(小时)
答略。
*例5 某船在静水中的速度是每小时15千米,它从上游甲港
开往乙港共用8小时。已知水速为每小时
3千米。此船从乙港返回甲
港需要多少小时?(适于高年级程度)
解:此船顺水的速度是:15+3=18(千米小时)
甲乙两港之间的路程是:18×8=144(千米)
此船逆水航行的速度是:15-3=12(千米小时)
此船从乙港返回甲港需要的时间是:144÷12=12(小时)
综
合算式:(15+3)×8÷(15-3)
=144÷12
=12(小时)
答略。
*例6 甲、乙两个码头相距144千米,一艘汽艇在静水中每小
时行2
0千米,水流速度是每小时4千米。求由甲码头到乙码头顺水而
行需要几小时,由乙码头到甲码头逆水而
行需要多少小时?(适于高
年级程度)
解:顺水而行的时间是:144÷(20+4)=6(小时)
逆水而行的时间是:144÷(20-4)=9(小时)
*例7 一条大河,河中间(主航道
)的水流速度是每小时8千米,
沿岸边的水流速度是每小时6千米。一只船在河中间顺流而下,小时行驶260千米。求这只船沿岸边返回原地需要多少小时?(适于高年
级程度)
解:此船顺流而下的速度是:260÷=40(千米小时)
此船在静水中的速度是:
40-8=32(千米小时)
此船沿岸边逆水而行的速度是:32-6=26(千米小时)
此船沿岸边返回原地需要的时间是:260÷26=10(小时)
综合算式:
260÷(260÷6.5-8-6)
=260÷(40-8-6)
=260÷26
=10(小时)
答略。
*例8 一只船
在水流速度是2500米小时的水中航行,逆水行120
千米用24小时。顺水行150千米需要多少小
时?(适于高年级程度)
解:此船逆水航行的速度是:120000÷24=5000(米小时)
此船在静水中航行的速度是:120000÷24=5000(米小时)
此船在静水中航行的速度是:5000+2500=7500(米小时)
此船顺水航行的速度是:7500+2500=10000(米小时)
顺水航行150千米需要的时间是:150000÷10000=15(小时)
综合算式:
150000÷(120000÷24+2500×2)
=150000÷(5000+5000)
=150000÷10000
=15(小时)
答略。
*例9 一只轮船在208千米长的水路中航行。顺水用8
小时,逆水
用13小时。求船在静水中的速度及水流的速度。(适于高年级程度)
解:此船顺水航行的速度是:208÷8=26(千米小时)
此船逆水航行的速度是:208÷13=16(千米小时)
由公式船速=(顺水速度+逆水速
度)÷2,可求出此船在静水中的速
度是:26+16)÷2=21(千米小时)
由公式水速=(顺水速度-逆水速度)÷2,可求出水流的速度是:
26-16)÷2=5(千米小时)
答略。
*例10 A、B两个码头相距180
千米。甲船逆水行全程用18小时,
乙船逆水行全程用15小时。甲船顺水行全程用10小时。乙船顺水
行
全程用几小时?(适于高年级程度)
解:甲船逆水航行的速度是:180÷18=10(千米小时)
甲船顺水航行的速度是:180÷10=18(千米小时)
根据水速=(顺水速度-
逆水速度)÷2,求出水流速度:
(18-10)÷2=4(千米小时)
乙船逆水航行的速度是:180÷15=12(千米小时)
乙船逆水航行的速度是:180÷15=12(千米小时)
乙船顺水航行的速度是:12+4×2=20(千米小时)
乙船顺水行全程要用的时间是:180÷20=9(小时)
综合算式:
180÷[180÷15+(180÷10-180÷18)÷2×3]
=180÷[12+(18-10)÷2×2]
=180÷[12+8]
=180÷20
=9(小时)
1、一只油轮,逆流而行,每小时行12千米,7小
时可以到达乙港。
从乙港返航需要6小时,求船在静水中的速度和水流速度?
分析:逆流而行
每小时行12千米,7小时时到达乙港,可求出甲
乙两港路程:12×7=84(千米),返航是顺水,
要6小时,可求出顺
水速度是:84÷6=14(千米),顺速-逆速=2个水速,可求出水流
速度(14-12)÷2=1(千米),因而可求出船的静水速度。
解:
(12×7÷6-12)÷2=2÷2=1(千米)
12+1=13(千米)
答:船在静水中的速度是每小时13千米,水流速度是每小时1千米。
2、某船在静水中的速
度是每小时15千米,河水流速为每小时5千
米。这只船在甲、乙两港之间往返一次,共用去6小时。求
甲、乙两
港之间的航程是多少千米?
分析:
1、知道船在静水中速度和水流速度,可求船逆水速度
15-5=10(千
米),顺水速度15+5=20(千米)。
2、甲、乙两港路程一定,往返的时间比与速度成反比。即速度比 是
10÷20=1:2,那么所用时间比为2:1 。
3、根据往返共用6小时,按比例分配可求往返各用的时间,逆水
时间为
6÷(2+1)×2=4(小时),再根据速度乘以时间求出路程。
解:
(15-5):(15+5)=1:2
6÷(2+1)×2=6÷3×2=4(小时)
(15-5)×4=10×4=40(千米)
答:甲、乙两港之间的航程是40千米。 3、一只船从甲地开往乙地,逆水航行,每小时行24千米,到达乙
地后,又从乙地返回甲地,比逆
水航行提前2. 5小时到达。已知水流
速度是每小时3千米,甲、乙两地间的距离是多少千米?
分析:逆水每小时行24千米,水速每小时3千米,那么顺水速度
是每小时
24+3×2=30(千米),比逆水提前2. 5小时,若行逆水那
么多时间,就可多行 30×2.
5=75(千米),因每小时多行3×2=6
(千米),几小时才多行75千米,这就是逆水时间。
解: 24+3×2=30(千米)
24×[ 30×2.
5÷(3×2)]=24× [ 30×2. 5÷6 ]=24×12. 5=300
(千米)
答:甲、乙两地间的距离是300千米。
答:甲、乙两地间的距离是300千米。
4、一轮船在甲、乙两个码头之间航行,顺水航行要8小时行完全
程,逆水航行要10小时行完全程。已
知水流速度是每小时3千米,求
甲、乙两码头之间的距离?
分析:顺水航行8小时,比逆水航行8小时可多行 6×8=48(千
米),而这48千米正好
是逆水(10-8)小时所行的路程,可求出逆
水速度 4 8÷2=24
(千米),进而可求出距离。
解: 3×2×8÷(10-8)=3×2×8÷2=24(千米)
24×10=240(千米)
答:甲、乙两码头之间的距离是240千米。
解法二:设两码头的距离为“1”,顺水每小时行
,逆水每小时行,
顺水比逆水每小时快-,快6千米,对应。
3×2÷(-)=6÷=24
0(千米)
答:(略)
5、某河有相距12 0千米的上下两个码头,每天定时有甲、乙两
艘
同样速度的客船从上、下两个码头同时相对开出。这天,从甲船上落
下一个漂浮物,此物顺水
漂浮而下,5分钟后,与甲船相距2千米,
预计乙船出发几小时后,可与漂浮物相遇?
分析:
从甲船落下的漂浮物,顺水而下,速度是“水速”,甲顺水
而下,速度是“船速+水速”,船每分钟与物
相距:(船速+水速)
-水速=船速。所以5分钟相距2千米是甲的船速5÷60=(小时),
2÷=24(千米)。因为,乙船速与甲船速相等,乙船逆流而行,速度
为24-水速,乙船与漂浮物相
遇,求相遇时间,是相遇路程120千米,
除以它们的速度和(24-水速)+水速=24(千米)。
解: 120÷[ 2÷(5÷60)]=120÷24=5(小时)
答:乙船出发5小时后,可与漂浮物相遇。
答略。