五年级数学下册重点知识归纳
生肖婚配-白纸的传奇
学习好资料 欢迎下载
五年级(下)各单元重点知识归纳表(第一稿)
第一单元:图形的变换
具体内容
重点知识
1.轴对称的意义:把一个图形沿着某一条直线对折,
如果它能够与另一
个图形完全重合,那么就说这两个
图形成轴对称;这条直线就是对称轴。两个图形完全
重合时的
点叫做对应点;互相重合的角叫做对应角,
互相重合的线段叫做对应线段。
2.轴对称的性质:对应点到对称轴的距离相等。
3.轴对称的特征:沿对称轴对折,对应点、对应线段、
对应角重合。
1.旋转的意义:物体绕着某一点运动,这种运动叫做
旋转。
2.图形旋转方向:钟表中指针的运动方向成为顺时针
旋转;反之,称逆时针旋转。
3.图形旋转的性质:图形绕着某一点旋转一定的度数,
图形中的对应点、对应线段都旋转相应的度数,
相对
应的点到旋转点的距离相等,对应角相等。
4.图形旋转的特征:图形旋转后,形状、大小都没有
发生变化,只是位置变了。
1.设计图形的基本方法:利用平移、旋转或对称,可
以设计简单而美丽的图案 <
br>2.运用平移设计图案的方法:(1)选好基本图形;(2)
确定平移的距离;(3)确定平移方
向;(4)画出平移
后的图形
3.运用平旋转计图案的方法:(1)选好基本图形;(2)<
br>确定旋转点;(3)定好旋转角度;(4)沿每次旋转后
的基本图形的边缘画图。
4.
运用对称设计图案的方法:(1)选好基本图形;(2)
定好对称轴;(3)画出基本图形的对称图形。
学生的实际学习难点
轴对称
旋转
设计图案
的基本方
法
学习好资料
欢迎下载
第二单元:因数与倍数
具体内容 重点知识
1.因数和倍数的意义:如果a×
b=c(a、b、c都不为0的整数),那
么a、b就是c的因数,c就是a、b
的倍数。
2.数与倍数的关系:因数和倍数是
两个不同的该概念,但又是一对相
互依存的概念,不能单独存在。
3.找一个数的因数的方
法:(1)列
乘法算式:根据因数的意义,有序地
写出两个乘积是此数的所有乘法算
式
,乘法算式中每个因数就是该数
的因能数。(2)列除法算式:用此
数除以大于1等于1而小于
等它本
身的整数,所得的商是整数而无余
数,这些除数和商都是该数的因数。
4.找
一个数的倍数的方法:求一个
数的倍数,就是用这个数,依次与
非零自然数相乘,所得之数就是
这
个数的倍数。
学生的实际学习困难
因数和倍数
1.2的倍数的特征:个位上是0、2、
4、6、8的数都是2的倍数。
2.奇数和偶数的意义:在自然数中,
是2的倍数的数叫做偶数,不是2
的倍数的数叫做奇数。
3.奇数、偶数的运算性质:奇数±
奇数=偶数,偶数±偶数=偶数,奇
2、3、5的
倍数的特征
数±偶数=奇数(大减小),奇数×
奇数=奇数,奇数×偶数=偶数,偶
数×偶数=偶数。
4.5的倍数的特征:个位上是0或5
的数都是5的倍数.
5.3的倍数的特征:一个数各位上的
数的和是3的倍数,这个数就是3
的倍数。
1.质数和合数的意义:一个数,如
果只有1和它本身两个因数,这样
的数
叫做质数(或素数);一个数,
如果除了1和它本身还有别的因
数,这样的数叫做合数。
2.质因数:每个合数都可以写成几
个质数相乘的形式,其中每个质数
质数和合数
学习好资料 欢迎下载
都是这个合数的质因数。
3.分解质因数:把一个合数用质数
相乘的形式表是出来,就是分解质
因数。
4.分解质因数的方法:(1):“树枝”
图式分解法;(2)短除法分解。
第三单元:长方体和正方体
具体内容 重点知识
1.长方体的特征:有6个面,
相对的面完全相同;有12条
棱,相对的棱长度相等;有8
个顶点
2.正方体的特征:正方体的6
个面完全相同;12条棱的长
度全相等;有8个顶点。
3.长方体长、宽、高的意义:
相交于同一顶点的三条棱的
长度分别叫做长方体的长、
宽、高。
1.表面积的意义:长方体或正
方体6个或5个面的总面积,
叫做它的表面积。
2.长方体的表面积的计算方
法:(2个)
3.正方体表面积的计算方法:
2
正方体的表面积=棱长×6
1.体积的意义:物体所占的空
间的大小叫做体积。
2.体积单位:立方
米、立方分
米、立方厘米;字母表示:
m
3
,dm
3,
cm
3
。
3.体积单位间的进率:1 m
3
=1000dm
3
dm
3
=1000cm
3.
4.容积的意义:箱子、油桶等
所能装下物体的体积,叫做箱
子等的容积。
5.容积的单位和容积单位之
间的进率:1L=1000ml
6.容积单位和体积单位之间
的换算:1L= dm
3
1
cm
3.
=1
ml
学生的实际学习困难
长方体(正方体)的特征
长方体和正方体的表面积
长方体和正方体的体积
学习好资料 欢迎下载
7.长方体体积计算公式和正
方体体积计算公式。
8.容积与体积的计算方法相
同,只是要从里面量它的长、
宽和高。
第四单元:分数的意义和性质
具体内容 重点知识
学生的实际学习困难
1.单位“1”的意义:一个物体、一些物
体都可以看作一个整
体,可以用自然数
1来表示,通常把它叫做单位“1”。
2.分数的意义:把单位“1”平均
分成若
干份,表示这样的一份或几份的数叫做
分数。
3.分数单位意义:把单位“1
”平均分成
若干份,表示其中一份的数叫做分数单
分数的产生和意义 位。
4.分数与除法的关系:被除数÷除数
被除数
= ,反来,分数也可以看作两个
除数
数相除,分数的分子相等于被除数,分
母相等于除数,分数相等于除号。
5.
“求一个数是(占)另一个数的几分
之几”的问题的解题办法:用一个数除
以另一个数。
1.真分数的意义:分子比分母小的分数
叫做真分数。
2.真分数的特征:真分数﹤1。
3.假分数的意义:分子比分母大或等于
分母的分数叫做假分数。
4.假分数的特征:假分数≦1。
5.带分数的意义:由整数(不包括0)
和真分数合成的数叫做真分数。
6.带分数的读法:先读整数部分,再读
分数部分,中间加“又”字。
7.带分数的
写法:先写整数部分,再写
分数部分,分数部分的分数线与整数的
中间对齐。
8.假
分数化成整数或带分数的方法:用
分子除以分母。当分子是分母倍数时,
能化成整数;当分子不
是分母的倍数
真分数和假分数
学习好资料 欢迎下载
时,能化成带分数,商是带分数的整数
部分,余数是分数部分的分子,分母不
变。 <
br>1.分数的基本性质:分数的分子和分母
同时乘或者除以一个相同的数(0除
外),分数
的大小不变,这就是分数的
基本性质。
2.分数基本性质的运用:可以把不同分
母的
分数化成同分母分数,也可以把一
个分数化成指定分母的分数。
分数的基本性质
约分
1.公因数和最大公因数的意义:几个数
公有的因数,叫做这几个数的公因数;
其中最大的一个,叫做它们的最大公因
数。 <
br>2.求两个数的最大公因数的方法:(1)
列举法;(2)先找出两个数中较小数的
因数
,再圏出是另一个数的因数,再看
哪一个最大;(3)分解质因数法;(4)
短除法。
3.求两个数的最大公因数的特殊方法:
(1)当两个数成倍数关系时,较小数是这
两个数的
最大公因数。(2)当两个数是
互质数时,最大公因数是1。
4.约分的意义:把一个分数化
成和它相
等,但分子和分母都比较小的分数,叫
做分数。
5.最简分数的意义:分子和分母只有公
因数1的分数。
6.约分的方法:(1)逐步约分;(2)一
次约分。
7.公因数只有1的两个数,叫做互质数。
1.公倍数和最小公倍数的意义:几个数
公有的倍数,叫做这几个数的公倍数;
其中最小的一个数,叫做最小公倍数。
2.求
两个数最小公倍数的方法:(1)列
举法(2)先求出两个数中较大数的倍
数,按从小到大的顺
序圈出较小数的倍
数,第一个圏的就是它们的最小公倍数
(3)分解质因数法(4)短除法。
3. 求两个数的最小倍数的特殊方法:当
两个数成倍数关系时,较大数是这两个
数的
最小公倍数。(2)当两个数是互质
数时,这两个数的乘积就是它们最小公
倍数。
通分
学习好资料 欢迎下载
4.通分的意义
:把异分母的分数分别化
成和原来分数相等的的同分母分数,叫
做通分。
5.通分的
方法:通分时用原分母的公倍
数作公分母,一般选用最小公倍数作公
分母,然后把各分数化成用
这个最小公
分母作分母的分数。
1.小数化成分数的方法:有限小数可以
直接写成分母是10、100、1000…的分
数。原来有几位小数,就在1后面写几
个零作分
母,把原来的小数点去掉作分
子。能约分的要约分,化成最简分数。
2.分数化成小数的方法:(1)分母是10,
分数和小数的互化 100,1000…的分数
化成小数,可以直
接去掉分母,看分母1后面有几个零,
就在分子中从最后一位起向左数出几<
br>位,点上小数点。(2)分母不是10,100,
1000…的分数化成小数,用分子除以分母,除不尽时,按“四舍五入”法保留
几位小数。
第五单元:分数的加法和减法
具体内容 重点知识
学生的实际学习困难
1.分数加法的意义:和整数加法的意
义相同,就是把两个数合并成一个数
的运算。
2.分数减法的意义:与整数减法的意
义相同,已知两个数的和与其中的一
个加数,求
另一个加数的运算。
3.分数加、减法的计算方法:分母不
同分母分数加、减法
变,分子相加减。
4.同分母分数连加的计算方法:从左
到右依次计算,也可以直接把加数的
分子连加起来,分母不变。
5.同分母分数连减的计算方法:从左
到右依次计算,也
可以直接用被减数
的分子连续减去两个减数的分子,分
母不变。
异分母分数加、减法的计算方法:一
异分母分数加、减法
般先通分,化成同分母的分数,然后
按照同分母分数加、减法的方法计算。
分数加减混合运算
1.分数加减混合运算的顺序:与整数
学习好资料
欢迎下载
加减混合运算的顺序相同。没有括号
的,按照从左到右的顺序进行计算;
有
括号的,先算括号里的,然后算括
号外的
2.分数加法的简算:整数加法的运算
定律在分数加法中同样适用。
第五单元:统计
具体内容 重点知识
1.众数的意义:在一组数据中,出现次数最多
的数,是这组数据的众数。
2.众数的特征:能够反映一组数据的集中情
况。
3.复式折线统计图:在计量过程
中存在两组数
据,而又需要在一个统计图中表示这两组数据
时,就要用两种不同形式的折线来表
示不同数
量变化情况的折线统计图。
4. 复式折线统计图的特点:能表示两组数据
数量的多少,数量的增减变化情况,还能比较
两组数据的变化趋势。
5.复式折线统计图的制
作:(1)根据两组数据
量多少和图纸大小,画出两条相互垂直的射
线;(2)在水平射线上确
定好各点的距离,分
配各点的位置;(3)在与水平射线垂直的射线
上,根据数据大小的具体情
况,确定单位长度
表示的数量;(4)用不同的图例表示两组不同
的数据;(5)按照数据大小
描出各点,再用线
段顺次连接;(6)标出题目,注明单位、日期。
学生的实际学习困难
统计
数学广角
具体内容 重点知识
找次品的最优
方法:把待测物
体分成3份,要分得尽量平
均,不能够平均分的,也应该
使多的一份与
少的一份只相
差1.
学生的实际学习困难
数学广角