2018高二数学竞赛试题及答案

绝世美人儿
925次浏览
2020年12月23日 08:45
最佳经验
本文由作者推荐

飞递-二十四节气的由来

2020年12月23日发(作者:戚元靖)


2018
高二数学竞赛试题及答案

一、选择题(本题满分
60
分,每题
5
分)

1< br>.复数
z

1i

2

2i

的虚部为
(

)
A.
2i
B.
2
C.
4i
D.
4

2
.已知集合
A

{(x
,< br>y)|x

a
2
y

6

0},集合
B

{(x

y)|(a

2)x
3ay

2a

0}
,若
A
B

Ø
,则
a
的值是
(

)
A. 3

-1 B. 0 C.

1 D. 0
或-
1
3

a2b3c

的展开式中
abc
2
的 系数为(



A. 208 B. 216 C. 217 D. 218
4.
某公司在
2013-2017
年的收入与支出情况如下表所示:

收入
x
(亿元)

支出
y
(亿元)


4
2.2
0.2

2.6
1.5
4.0
2.0
5.3
2.5
5.9
3.8



根据表中数据可得回归直线方程为
y0.8xa
,依此估计如果
2018
年该公司收入为
7
亿元时的支出为
(

)
A. 4.5
亿元
B. 4.4
亿元
C. 4.3
亿元
D. 4.2
亿元

5.
在如图所示的正方形中随机投掷
1000 0
个点,则落入阴影部分(曲线
C
的方程为
x
2
y0< br>
)的点的个数的估
计值为
( )

A. 5000 B. 6667 C. 7500
6.
函数
ycos
2
x3sinxcosx
在区间


D. 7854



,

上的值域是(




64

A.



1

,1

B.
2


13


,

C.
22


3

0,




2

D.

0,


31



2
7
.小方,小明,小马,小红四人参加完某项比赛,当问到四人谁得第一时,回答如下: 小方:“我得第一名”;小
明:“小红没得第一名”;小马:“小明没得第一名”;小红:“我得第一名 ”
.
已知他们四人中只有一人说真话,且只
有一人得第一
.
根据以上 信息可以判断出得第一名的人是(



1


A.
小明
B.
小马
C.
小红
D.
小方

8.
一个三棱锥的三视图如图所示,其中正视图和侧视图是全等 的等腰三角形,则此三棱锥外接球的表面积为



A.
9

B.
9

C. 4

D.


4< br>9
.我国南宋时期的数学家秦九韶
(

1202-1261)
在他的著作《数书九章》中提出了多项式求值的秦九韶算法,如图

所示的框图给出了利用秦九 韶算法求多项式的一个实例.若输入的
n5
,则程序框图计算的是(


v1

x2

开始
输入
n,v,x
in1
ii1
vvx1

i0?

输出 v
结束

A

2
5
2
4
2< br>3
2
2
21
B
2
5
2
4
2
3
2
2
25< br>
D

2
4
2
3
2
2
21
C

2
6
2
5
2
4
2
3< br>2
2
21

10.

O
点在
ABC
内部,且有
OA2OB3OC0
,则
ABC
的面积 与
AOC
的面积的比为
( )

A.
2
B.
3
C.
35
D.
23
11
.已知抛物线
C


y
2
2px(p0)
和动直线
l


ykxb

k


b
是参变量,且
k0


b0
)相交于
A

x
1
,y
1



B

x
2
,y
2

两点,

OB
的斜率分别为
k
OA


k
OB,直角坐标系原点为
O
,记直线
OA
,若
k
O
k
A

OB
恒成立,则当
k
变化时直线
l
恒经过的定点为(



3
2



3p

A.
3p,0
B.
23p,0
C.



3
,0


D.



23



3
p,0




3

1
x,x1

f(x)
12.
已知函数(
lnx
是以
e
为底的自然对数,
e=2.71828...
),若存在实数
m, n(m,满足
2

2


lnx,x1< br>f(m)=f(n)
,则
n-m
的取值范围为
( )
A. B. C. D.
二、填空题

(本题满分
20
分,每题
5
分)

< br>x2y2

13.
已知实数
x,y
满足约束条件

2xy4
,则目标函数
z3xy
的取值范围为
.

4xy1

14.
如图,矩形
ABCD
中,
AB=2AD

E
为边
AB
的中点,将
V
ADE
沿直线
DE
翻折成
V
A
1
DE
,若
M
为线段
A
1
C

中点,则在
V
ADE
翻折过程中,下列命题正确的是

.(写出所有正确的命题的编号)

①线段
BM
的长是定值;②存在某个位置,使
DE

A
1
C
;③点
M
的运动轨迹是一个圆;④存在某个位置,使
MB
P
平面
A
1
DE



x
2
y
2
15.
已知双曲线
2

2
1


a0



b0



的左、右焦点分别为
F
1

F
2

,过
F
2

的直线交双曲线右支于
P


ab
Q

两点,且
PQPF
1

,若
PQ
5
PF
1

,则双曲线的离心率为
__________ .
12
16
. 九个连续正整数自小到大排成一个数列
a
1
,a
2
,...,a9
,若
a
1
a
3
a
5
a
7
a
9
是一个平方数,
a
2
a
4
 a
6
a
8
是一个立方数,则
a
1
a
2
a
3
...a
9
的最小值是
.
三、解答题(本题满分70分)
17.(本小题满分10分)△
ABC
中,
A,B,C
所对的边分别为
a,b,c

tan C
(1)求
A,C

(2)若
S
ABC
33
,求
a,c
.

18
.(本小题满分
12
分)已知数列

an

满足
a
1
1

a
n1
2a
n
1(nN)
.
sinAsinB
,
sin(BA)cosC
.
cosAcosB
3



1
)求数列< br>
a
n

的通项公式;

a
n
a< br>1
a
2
n
...
.

2
)证明:
a
2
a
3
a
n1
2
19
.(本小题满分
12
分)为响应国家“精准扶贫,产业扶贫”的战略,哈市面向全市征召《扶 贫政策》义务宣传志
愿者,从年龄在
20,45

500
名志愿者中 随机抽取
100
名,其年龄频率分布直方图如图所示.




1
)求图中
x
的值;


2
) 在抽出的
100
名志愿者中按年龄采用分层抽样的方法抽取
10
名参加中心广 场的宣传活动,再从这
10
名志愿
者中选取
3
名担任主要负责人.记 这
3
名志愿者中“年龄低于
35
岁”的人数为
X
,求
X
的分布列及数学期望.

20.
(本小题满分
12
分 )如图,在△
ABC
中,∠
C=90
°,∠
ABC
的平分线 交
AC
于点
E
,过点
E

BE
的垂线交< br>AB
于点
F
,⊙
O
是△
BEF
的外接圆,⊙
O

BC
于点
D



1
)求证:
AC
是⊙
O
的切线;

2
)过点
E

EH

AB
,垂足为
H
,求证:
CD=HF



3
)在(< br>2
)条件下,若
CD=1

EH=3
,求
BF

AF
长.


21
.(本小题满分
12
分)已知椭圆
C


1
)求椭圆
C
的方程;
=1

a

b

0
)的离心率为 ,并且过点
P

2
,﹣
1



2
)设点
Q
在椭圆
C
上,且
PQ

x轴平行,过
p
点作两条直线分别交椭圆
C
于两点
A
(< br>x
1

y
1
),
B

x
2

y
2
),若
直线
PQ
平分∠
APB,求证:直线
AB
的斜率是定值,并求出这个定值.

4

世界末日在什么时候-lol布隆出装


操纵-凉面的做法及调料


仰望天空与脚踏实地-个性签名女生


呼叫中心外包公司-弯弯的月亮


傅国良-数学题解答器


蒙古包图片-坏太平洋


巴金的资料-经典动漫图片


成都中医药大学分数线-北岛的诗