一元二次方程复习题含答案
冠豸山-推迟更年期
一元二次方程测试题
考试范围:
一元二次方程
;考试时间:120分钟;命题人:瀚博教育
题号
得分
一
二
三
总分
第Ⅰ卷(选择题)
评卷人
得 分
一.选择题(共12小题,每题3分,共36分)
1.方程x(x﹣2)=3x的解为( )
A.x=5
B.x
1
=0,x
2
=5
C.x
1
=2,x
2
=0
D.x
1
=0,x
2
=﹣5
2.下列方程是一元二次方程的是( )
A.ax
2
+bx+c=0
B.3x
2
﹣2x=3(x
2
﹣2)
C.x
3
﹣2x﹣4=0 D.(x﹣1)
2
+1=0
3
.关于x的一元二次方程x
2
+a
2
﹣1=0的一个根是0,则a的值为(
)
A.﹣1 B.1 C.1或﹣1 D.3
4.某旅游景点的游客人数
逐年增加,据有关部门统计,2015年约为12万人
次,若2017年约为17万人次,设游客人数年
平均增长率为x,则下列方程
中正确的是( )
A.12(1+x)=17
B.17(1﹣x)=12
C.12(1+x)
2
=17
D.12+12(1+x)+12(1+x)
2
=17
5.如图,在△AB
C中,∠ABC=90°,AB=8cm,BC=6cm.动
点P,Q分别从点A,B同时开始移动,点
P的速度为1cm
秒,点Q的速度为2cm秒,点Q移动到点C后停止,点P
也随之停止运动.
下列时间瞬间中,能使△PBQ的面积为
15cm
2
的是( )
A.2秒钟 B.3秒钟 C.4秒钟 D.5秒钟
6.某幼儿园要准备修建一个面
积为210平方米的矩形活动场地,它的长比
宽多12米,设场地的长为x米,可列方程为(
)
A.x(x+12)=210 B.x(x﹣12)=210
C.2x+2(x+12)=210 D.2x+2(x﹣12)=210
7.一元二次方程x
2
+bx﹣2=0中,若b<0,则这个方程根的情况是(
)
1 21
A.有两个正根
B.有一正根一负根且正根的绝对值大
C.有两个负根
D.有一正根一负根且负根的绝对值大
8.x
1
,x
2
是
方程x
2
+x+k=0的两个实根,若恰x
1
2
+x
1x
2
+x
2
2
=2k
2
成立,k的值为
( )
A.﹣1 B.或﹣1 C. D.﹣或1
9.一元二次方程
ax
2
+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情
况是(
)
A.有两个正根 B.有两个负根
C.有一正根一负根且正根绝对值大 D.有一正根一负根且负根绝对值大
1
0.有两个一元二次方程:M:ax
2
+bx+c=0;N:cx
2
+bx+
a=0,其中a﹣c≠0,
以下列四个结论中,错误的是( )
A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数
根
B.如果方程M有两根符号相同,那么方程N的两根符号也相同
C.如果5是方程M的一个根,那么是方程N的一个根
D.如果方程M和方程N有一个相同的根,那么这个根必是x=1
11.已知m,n
是关于x的一元二次方程x
2
﹣2tx+t
2
﹣2t+4=0的两实数根,则
(m+2)(n+2)的最小值是( )
A.7 B.11 C.12
D.16
12.设关于x的方程ax
2
+(a+2)x+9a=0,有两个
不相等的实数根x
1
、x
2
,且
x
1
<1<x2
,那么实数a的取值范围是( )
A. B. C. D.
第Ⅱ卷(非选择题)
评卷人
得 分
二.填空题(共8小题,每题3分,共24分)
13.若x
1
,x
2
是关于x的方程x
2
﹣2x﹣
5=0的两根,则代数式x
1
2
﹣3x
1
﹣x
2
﹣
6的值是 .
14.已知x
1
,x
2
是
关于x的方程x
2
+ax﹣2b=0的两实数根,且x
1
+x
2=﹣2,x
1
•x
2
=1,
则b
a
的值是
.
15.已知2x
|
m
|﹣
2
+3=9是关于x
的一元二次方程,则m= .
16.已知x
2
+6
x=﹣1可以配成(x+p)
2
=q的形式,则q= .
17.已
知关于x的一元二次方程(m﹣1)x
2
﹣3x+1=0有两个不相等的实数根,
且关
于x的不等式组
m的个数是 .
18.关于x的方程(m﹣2)x
2
+2x+1=0有实数根,则偶数m的最大值为
.
19.如图,某小区有一块长为18米,宽为6米的矩形
空地,计划在其中修建两
块相同的矩形绿地,它们面
积之和为60米
2
,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为 米.
20.如图是一次函数y=kx+b的图
象的大致位置,试判断关于
x的一元二次方程x
2
﹣2x+kb+1=0的根的判别式
△ 0
(填:“>”或“=”或“<”).
评卷人
得 分
的解集是x<﹣1,则所有符合条件的整数
三.解答题(共8小题)
21.(6分)解下列方程.
(1)x
2
﹣14x=8(配方法)
(2)x
2
﹣7x﹣18=0(公式法)
(3)(2x+3)
2
=4(2x+3)(因式分解法)
22.(6分)关于x的一元二次方程(m﹣1)x
2
﹣x﹣2=0
(1)若x=﹣1是方程的一个根,求m的值及另一个根.
(2)当m为何值时方程有两个不同的实数根.
3
21
23.(6分)关于x的一元二次方程(a﹣6)x
2
﹣8x+
9=0有实根.
(1)求a的最大整数值;
(2)当a取最大整数值时,①求出该方程的根;
②求2x
2
﹣
24.(6分)关
于x的方程x
2
﹣(2k﹣3)x+k
2
+1=0有两个不相等的实数根x<
br>1
、
x
2
.
(1)求k的取值范围;
<
br>(2)若x
1
x
2
+|x
1
|+|x
2|=7,求k的值.
25.(8分)某茶叶专卖店经销一种日
照绿茶,每千克成本80元,据销售人
员调查发现,每
月的销售量y(千克)
与销售单价x(元千克)之间存在如图
所示的变化规律.
(1)求每月销售量y与销售单价x之
间的函数关系式.
(2)若某月该茶
叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售
单价x为多少元.
的值.
26
.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面
积为1500平方米的长方形
草坪,并将草坪四周余下的空地修建成同样宽的
通道,已知长方形空地的长为60米,宽为40米.
(1)求通道的宽度;
(2)晨光园艺公司承揽了该小区草坪的种植工程,<
br>计划种植“四季青”和“黑麦草”两种绿草,该公司种植
“四季青”的单价是30元平方米,超过
50平方米后,
每多出5平方米,所有“四季青”的种植单价可降低1
元,但单价不低于20元
平方米,已知小区种植“四季青”的面积超过了50平
方米,支付晨光园艺公司种植“四季青”的费用为
2000元,求种植“四季青”
的面积.
27.(10分)某商店经销甲、乙两种商品,现有如下信息:
信息1:甲、乙两种商品的进货单价之和是3元;
信息2:甲商品零售单价比进货单
价多1元,乙商品零售单价比进货单价的
2倍少1元;
信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元.
请根据以上信息,解答下列问题:
(1)求甲、乙两种商品的零售单价;
(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品
零售单价每降0.
1元,甲种商品每天可多销售100件,商店决定把甲种商品
的零售单价下降m(m>0)元.在不考虑
其他因素的条件下,当m为多少
时,商店每天销售甲、乙两种商品获取的总利润为1000元?
5 21
28.(10分)已知关于x的
一元二次方程x
2
﹣(m+6)x+3m+9=0的两个实数
根分别为x
1<
br>,x
2
.
(1)求证:该一元二次方程总有两个实数根;
(2)若n=4(x
1
+x
2
)﹣x
1
x
2
,判断动点P(m,n)所形成的函数图象是否经
过点A(1,16),并说明理由.
7 21
2018年02月28日刘笑天的初中数学组卷
参考答案与试题解析
一.选择题(共12小题)
1.方程x(x﹣2)=3x的解为( )
A.x=5
B.x
1
=0,x
2
=5
C.x
1
=2,x
2
=0
D.x
1
=0,x
2
=﹣5
【解答】解:x(x﹣2)=3x,
x(x﹣2)﹣3x=0,
x(x﹣2﹣3)=0,
x=0,x﹣2﹣3=0,
x
1
=0,x
2
=5,
故选B.
2.下列方程是一元二次方程的是( )
A.ax
2
+bx+c=0
B.3x
2
﹣2x=3(x
2
﹣2)
C.x
3
﹣2x﹣4=0 D.(x﹣1)
2
+1=0
【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项错误;
B、由原
方程得到2x﹣6=0,未知数的最高次数是1,不是一元二次方程,故
本选项错误;
C、未知数最高次数是3,该方程不是一元二次方程,故本选项错误;
D、符合一元二次方程的定义,故本选项正确;
故选D.
3.关于x的一元二次方程x
2
+a
2
﹣1=0的一个根
是0,则a的值为( )
A.﹣1 B.1 C.1或﹣1 D.3
【
解答】解:∵关于x的一元二次方程x
2
+a
2
﹣1=0的一个根是0,
∴0
2
+a
2
﹣1=0,
解得,a=±1,
故选C.
4.某旅游景
点的游客人数逐年增加,据有关部门统计,2015年约为12万人
次,若2017年约为17万人次,
设游客人数年平均增长率为x,则下列方程
1 21
中正确的是(
)
A.12(1+x)=17 B.17(1﹣x)=12
C.12(1+x)
2
=17
D.12+12(1+x)+12(1+x)
2
=17
【解答】解:设游客人数的年平均增长率为x,
则2016的游客人数为:12×(1+x),
2017的游客人数为:12×(1+x)
2
.
那么可得方程:12(1+x)
2
=17.
故选:C.
5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动
点P,Q分别从点
A,B同时开始移动,点P的速度为1cm秒,点Q的速度为2cm秒,点Q
移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的
面积为15cm
2
的是( )
A.2秒钟 B.3秒钟 C.4秒钟
D.5秒钟
【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm
2
,
则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,
×(8﹣t)×2t=15,
解得t
1
=3,t
2
=5(当t=5时,BQ=10,不合题意,舍去).
答:动点P,Q运动3秒时,能使△PBQ的面积为15cm
2
.
6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比
宽多1
2米,设场地的长为x米,可列方程为( )
A.x(x+12)=210
B.x(x﹣12)=210 C.2x+2(x+12)=210
D.2x+2(x
﹣12)=210
【解答】解:设场地的长为x米,则宽为(x﹣12)米,
根据题意得:x(x﹣12)=210,
故选:B.
7.一元二次方程x
2
+bx﹣2=0中,若b<0,则这个方程根的
情况是( )
A.有两个正根
B.有一正根一负根且正根的绝对值大
C.有两个负根
D.有一正根一负根且负根的绝对值大
【解答】解:x
2
+bx﹣2=0,
△=b
2
﹣4×1×(﹣2)=b
2
+8,
即方程有两个不相等的实数根,
设方程x
2
+bx﹣2=0的两个根为c、d,
则c+d=﹣b,cd=﹣2,
由cd=﹣2得出方程的两个根一正一负,
由c+d=﹣b和b<0得出方程的两个根中,正数的绝对值大于负数的绝对值,
故选B.
8.x
1
,x
2
是方程x
2
+x+k=0的两个实根,若恰x
1
2
+x
1<
br>x
2
+x
2
2
=2k
2
成立,k的值为( )
A.﹣1 B.或﹣1 C. D.﹣或1
【解答】解:根
据根与系数的关系,得x
1
+x
2
=﹣1,x
1
x
2
=k.
又x
1
2
+x
1
x
2
+x
2
2
=2k
2
,
则(x
1
+x
2
)
2
﹣x
1
x
2
=2k<
br>2
,
即1﹣k=2k
2
,
解得k=﹣1或.
当k=时,△=1﹣2<0,方程没有实数根,应舍去.
∴取k=﹣1.
故本题选A.
9.一元二
次方程ax
2
+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情
况是
( )
A.有两个正根
B.有两个负根
C.有一正根一负根且正根绝对值大
3 21
D.有一正根一负根且负根绝对值大
【解答】解:∵a>0,b<0,c<0,
∴△=b
2
﹣4ac>0,<0,﹣>0,
∴一元二次方程ax<
br>2
+bx+c=0有两个不相等的实数根,且两根异号,正根的绝
对值较大.
故选:C.
10.有两个一元二次方程:M:ax
2
+bx+c=0;N:cx
2
+bx+a=0,其中a﹣c≠0,
以下列四个
结论中,错误的是( )
A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数
根
B.如果方程M有两根符号相同,那么方程N的两根符号也相同
C.如果5是方程M的一个根,那么是方程N的一个根
D.如果方程M和方程N有一个相同的根,那么这个根必是x=1
【解答】解:A、
在方程ax
2
+bx+c=0中△=b
2
﹣4ac,在方程cx
2<
br>+bx+a=0中△
=b
2
﹣4ac,
∴如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数
根,正确;
B、∵“和符号相同,和符号也相同,
∴如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;
C、∵5是方程M的一个根,
∴25a+5b+c=0,
∴a+b+c=0,
∴是方程N的一个根,正确;
D、M﹣N得
:(a﹣c)x
2
+c﹣a=0,即(a﹣c)x
2
=a﹣c,
∵a﹣c≠1,
∴x
2
=1,解得:x=±1,错误.
故选D.
11.已知m,n是关于x的一元二次方程x
2
﹣2tx+t
2
﹣2t+4=0的两实数根,则
(m+2
)(n+2)的最小值是( )
A.7 B.11 C.12 D.16
【解答】解:∵m,n是关于x的一元二次方程x
2
﹣2tx+t
2
﹣2t
+4=0的两实数
根,
∴m+n=2t,mn=t
2
﹣2t+4,
∴(m+2)(n+2
)=mn+2(m+n)+4=t
2
+2t+8=(t+1)
2
+7.
∵方程有两个实数根,
∴△=(﹣2t)
2
﹣4(t
2
﹣2t+4)=8t﹣16≥0,
∴t≥2,
∴(t+1)
2
+7≥(2+1)
2
+7=16.
故选D.
12.设关于x的方程ax
2
+(
a+2)x+9a=0,有两个不相等的实数根x
1
、x
2
,且
x<
br>1
<1<x
2
,那么实数a的取值范围是( )
A.
B. C. D.
【解答】解:方法1、∵方程有两个不相等的实数根,
则a≠0且△>0,
由(a+2)
2
﹣4a×9a=﹣35a2
+4a+4>0,
解得﹣<a<,
∵x
1
+x
2
=﹣,x
1
x
2
=9,
又∵x
1
<1<x
2
,
∴x
1
﹣1<0,x
2
﹣1>0,
那么(x
1
﹣1)(x
2
﹣1)<0,
∴x1
x
2
﹣(x
1
+x
2
)+1<0,
即9+
解得
+1<0,
<a<0,
<a<0.
最后a的取值范围为:
故选D.
方法2、由题意知,a≠0,令y=ax
2
+(a+2)x+9a,
5 21
由于方程的两根一个大于1,一个小于1,
∴抛物线与x轴的交点分别在1两侧,
当a>0时,x=1时,y<0,
∴a+(a+2)+9a<0,
∴a<﹣(不符合题意,舍去),
当a<0时,x=1时,y>0,
∴a+(a+2)+9a>0,
∴a>﹣
∴﹣
,
<a<0,
故选D.
二.填空题(共8小题)
13.若x
1
,x
2
是关于x的方程x
2
﹣2x﹣5=0的两根,则代数式x
1
2
﹣3x
1
﹣x
2
﹣
6的值是 ﹣3 .
【解答】解:∵x
1
,x
2
是关于x的方程x
2
﹣2x
﹣5=0的两根,
∴x
1
2
﹣2x
1
=5,x<
br>1
+x
2
=2,
∴x
1
2
﹣3x
1
﹣x
2
﹣6=(x
1
2
﹣2x
1
)﹣(x
1
+x
2
)﹣6=5﹣2﹣6=﹣3.
故答案为:﹣3.
14.已知x
1
,x2
是关于x的方程x
2
+ax﹣2b=0的两实数根,且x
1
+
x
2
=﹣2,x
1
•x
2
=1,
则b
a<
br>的值是 .
【解答】解:∵x
1
,x
2
是关于x
的方程x
2
+ax﹣2b=0的两实数根,
∴x
1
+x<
br>2
=﹣a=﹣2,x
1
•x
2
=﹣2b=1,
解得a=2,b=﹣,
∴b
a
=(﹣)
2
=.
故答案为:.
15.已知2x
|
m
|﹣
2
+3=9
是关于x的一元二次方程,则m= ±4 .
【解答】解:由题意可得|m|﹣2=2,
解得,m=±4.
故答案为:±4.
16.已知x
2
+6x=﹣1可以配成(x+p)
2
=q的形式,则
q= 8 .
【解答】解:x
2
+6x+9=8,
(x+3)
2
=8.
所以q=8.
故答案为8.
17.已知关于x的一元二次方程(m﹣1)x
2
﹣3x+1=0有两个不相等的实数根,
且关于x的不等式组
m的个数是
4 .
【解答】解:∵关于x的一元二次方程(m﹣1)x
2
﹣3x+1=
0有两个不相等的
实数根,
∴m﹣1≠0且△=(﹣3)
2
﹣4(
m﹣1)>0,解得m<
,∵解不等式组得,
且m≠1,
的解集是x<﹣1,则所有符合条件的整数
而此不等式组的解集是x<﹣1,
∴m≥﹣1,
∴﹣1≤m<且m≠1,
∴符合条件的整数m为﹣1、0、2、3.
故答案为4.
18.关于x的方程(m﹣2)x
2
+2x+1=0有实数根,则偶数m的最大值为
2 .
【解答】解:由已知得:△=b
2
﹣4ac=2
2
﹣4(m﹣2)≥0,
即12﹣4m≥0,
解得:m≤3,
∴偶数m的最大值为2.
故答案为:2.
7 21
19.如图,某小区有一块长为18米,宽为6米的矩形空地,计
划在其中修
建两块相同的矩形绿地,它们面积之和为60米
2
,两块绿地之间及周边留
有
宽度相等的人行通道,则人行道的宽度为 1 米.
【解答】解:设人行道的宽度为x米(0<x<3),根据题意得:
(18﹣3x)(6﹣2x)=60,
整理得,(x﹣1)(x﹣8)=0.
解得:x
1
=1,x
2
=8(不合题意,舍去).
即:人行通道的宽度是1米.
故答案是:1.
20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方
程x
2
﹣2x+kb+1=0的根的判别式△ > 0(填:“>”或“=”或“<”).
【解答】解:∵次函数y=kx+b的图象经过第一、三、四象限,
∴k>0,b<0,
∴△=(﹣2)
2
﹣4(kb+1)=﹣4kb>0.
故答案为>.
三.解答题(共8小题)
21.解下列方程.
(1)x
2
﹣14x=8(配方法)
(2)x
2
﹣7x﹣18=0(公式法)
(3)(2x+3)
2
=4(2x+3)(因式分解法)
(4)2(x﹣3)
2
=x
2
﹣9.
【解答】解:(1)x
2
﹣14x+49=57,
(x﹣7)
2
=57,
x﹣7=±
所以x
1
=7+
,
,x
2
=7﹣;
(2)△=(﹣7)
2
﹣4×1×(﹣18)=121,
x=,
所以x
1
=9,x
2
=﹣2;
(3)(2x+3)
2
﹣4(2x+3)=0,
(2x+3)(2x+3﹣4)=0,
2x+3=0或2x+3﹣4=0,
所以x
1
=﹣,x
2
=;
(4)2(x﹣3)
2
﹣(x+3)(x﹣3)=0,
(x﹣3)(2x﹣6﹣x﹣3)=0,
x﹣3=0或2x﹣6﹣x﹣3=0,
所以x
1
=3,x
2
=9.
22.关于x的一元二次方程(m﹣1)x
2
﹣x﹣2=0
(1)若x=﹣1是方程的一个根,求m的值及另一个根.
(2)当m为何值时方程有两个不同的实数根.
【解答】解:(1)将x=﹣1代入原方程得m﹣1+1﹣2=0,
解得:m=2.
当m=2时,原方程为x
2
﹣x﹣2=0,即(x+1)(x﹣2)=0,
∴x
1
=﹣1,x
2
=2,
∴方程的另一个根为2.
(2)∵方程(m﹣1)x
2
﹣x﹣2=0有两个不同的实数根,
∴
解得:m>且m≠1,
∴当m>且m≠1时,方程有两个不同的实数根.
23.关于x的一元二次方程(a﹣6)x
2
﹣8x+9=0有实根.
,
9 21
(1)求a的最大整数值;
(2)当a取最大整数值时,①求出该方程的根;
②求2x
2
﹣的值.
【解答】解:(1)根据题意△=64﹣4×(a﹣6)×9≥0且a﹣6≠0,
解得a≤且a≠6,
所以a的最大整数值为7;
(2)①当a=7时,原方程变形为x
2
﹣8x+9=0,
△=64﹣4×9=28,
∴x=
∴x
1
=4+
,
,x
2
=4﹣;
②∵x
2
﹣8x+9=0,
∴x
2
﹣8x=﹣9,
所以原式=2x
2
﹣
=2x
2
﹣16x+
=2(x
2
﹣8x)+
=2×(﹣9)+
=﹣
24.关于x的方程x
2
﹣(2k﹣3)x+k<
br>2
+1=0有两个不相等的实数根x
1
、x
2
.
(1)求k的取值范围;
(2)若x
1
x
2
+|
x
1
|+|x
2
|=7,求k的值.
【解答】解:(1)∵原方程有两个不相等的实数根,
∴△=[﹣(2k﹣3)]<
br>2
﹣4(k
2
+1)=4k
2
﹣12k+9﹣4k
2
﹣4=﹣12k+5>0,
解得:k<
.
;
(2)∵k<,
∴x
1
+x
2
=2k﹣3<0,
又∵x
1
•x
2
=k
2
+1>0,
∴x
1
<0,x
2
<0,
∴|x
1|+|x
2
|=﹣x
1
﹣x
2
=﹣(x
1+x
2
)=﹣2k+3,
∵x
1
x
2
+|x
1
|+|x
2
|=7,
∴k
2
+1﹣2k+3=7,即k
2
﹣2k﹣3=0,
∴k
1
=﹣1,k
2
=2,
又∵k<
∴k=﹣1.
25.某茶叶专卖店经销一种
日照绿茶,每千克成本80元,据销售人员调查
发现,每月的销售量y(千克)与销售单价x(元千克)
之间存在如图所示
的变化规律.
(1)求每月销售量y与销售单价x之间的函数关系式.
(2)若某月该茶叶点销售
这种绿茶获得利润1350元,试求该月茶叶的销售
单价x为多少元.
,
【解答】解:(1)设一次函数解析式为y=kx+b,
把(90,100),(100,80)代入y=kx+b得,
,
解得,,
y与销售单价x之间的函数关系式为y=﹣2x+280.
(2)根据题意得:w=(x﹣80)(﹣2x+280)=﹣2x
2
+4
40x﹣22400=1350;
解得(x﹣110)
2
=225,
解得x
1
=95,x
2
=125.
11 21
答:销售单价为95元或125元.
26.如
图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500
平方米的长方形草坪,并将草
坪四周余下的空地修建成同样宽的通道,已知
长方形空地的长为60米,宽为40米.
(1)求通道的宽度;
(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植
“四季青”和“黑
麦草”两种绿草,该公司种植“四季青”的单价是30元平方米,超过50平方
米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低
于20元平方米,已知小
区种植“四季青”的面积超过了50平方米,支付晨光
园艺公司种植“四季青”的费用为2000元,求
种植“四季青”的面积.
【解答】解:(1)设通道的宽度为x米.
由题意(60﹣2x)(40﹣2x)=1500,
解得x=5或45(舍弃),
答:通道的宽度为5米.
(2)设种植“四季青”的面积为y平方米.
由题意:y(30﹣
解得y=100,
答:种植“四季青”的面积为100平方米.
27.某商店经销甲、乙两种商品,现有如下信息:
信息1:甲、乙两种商品的进货单价之和是3元;
信息2:甲商品零售单价比进货单
价多1元,乙商品零售单价比进货单价的
2倍少1元;
信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元.
请根据以上信息,解答下列问题:
(1)求甲、乙两种商品的零售单价;
)=2000,
(2)该商店平均每天卖出甲乙两种商品各500件
,经调查发现,甲种商品
零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品
的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m为多少
时,商店每天销售甲
、乙两种商品获取的总利润为1000元?
【解答】22.(1)假设甲种商品的进货单价为x元、乙种商品的进货单价为
y元,
根据题意可得:
解得:.
,
答:甲、乙零售单价分别为2元和3元.
(2)根据题意得出:(1﹣m)(500+
即2m
2
﹣m=0,
解得m=0.5或m=0(舍去),
×100)+500=1000
答:当m定为0.5元才能使商店每天销售甲、乙两种商品获取的利润共1000
元.
28.已知关于x的一元二次方程x
2
﹣(m+6)x+3m+
9=0的两个实数根分别为
x
1
,x
2
.
(1)求证:该一元二次方程总有两个实数根;
(2)若n=4(x
1+x
2
)﹣x
1
x
2
,判断动点P(m,n)所形成的
函数图象是否经
过点A(1,16),并说明理由.
【解答】解(1)∵△=(m+
6)
2
﹣4(3m+9)=m
2
≥0
∴该一元二次方程总有两个实数根
(2)动点P(m,n)所形成的函数图象经过点A(1,16),
∵n=4(x<
br>1
+x
2
)﹣x
1
x
2
=4(m+6)﹣(
3m+9)=m+15
∴P(m,n)为P(m,m+15).
∴A(1,16)在动点P(m,n)所形成的函数图象上.
13 21