新人教版六年级上册数学第三单元分数除法教材分析

玛丽莲梦兔
627次浏览
2020年12月27日 15:00
最佳经验
本文由作者推荐

宝葫芦的秘密-梦回大唐爱

2020年12月27日发(作者:殷秀梅)


第三单元 分数除法

一、教学内容
1.倒数的认识
2.分数除法的计算
3.问题解决
二、教学目标
1.使学生理解倒数的意义,掌握求一个数的倒数的方法。
2.使学生体会分数除法的意义,理解并掌握分数除法的
计算方法,会进行分数除法计算。
3.使学生会解决一些和分数除法相关的实际问题。
4.使学生体会数学与生活的密切联系,体会并掌握模型、
方程、数形结合等数学思想。
三、主要变化与具体编排
(一)主要变化
除了把“倒数”从“分数乘法”单元移过 来和把“比”
的内容另设单元以外,本单元还有两个较大的变化。
1.删去“分数除法意义”的相关例题。
考虑到学生对整数乘、除法之间的关系已经非常熟悉 ,
修订后的教材不再单独设置有关“分数除法意义”的例题,
只在相关练习中进一步巩固分数乘 、除法之间的关系。
2.增加两类“问题解决”。


第一类是和倍、差倍问题 (两个量之间的“倍数关系”
是以“几分之几”的形式出现的)。在这类问题中,有两个
未知量 ,这两个未知量之间的数量关系也有两个。例如,第
41页例6中,两个未知量分别是“上半场得分”和 “下半场
得分”,两个数量关系分别是“上半场和下半场共得42分”
和“下半场得分是上半场 的一半”。解决时,可以设其中一
个未知量为
x
,利用其中的一个数量关系,用代数式 表示出
另一个未知量,再利用另一个数量关系列出方程。设的未知
数不同,列代数式和列方程所 依据的数量关系不同,列出的
方程也完全不同。例如,本例就可以列出如下一些方程。
设其中一个如果设上半场:
x

未知量为
x

用 代数式表下半场:下半场:
x
上半场:上半场:2
x
如果设下半场:
x

示出另一个(42-
x
)分 分

(42-
x
)分 分
(依据“全(依据“下(依据“全(依据“下
场得42
分”)
半场得分是场得42
上半场的一分”)
半”)
半场得分是
上半场 的一
半”,即“上
半场得分是
下半场的2
倍”)
列出方程 42-
x
=
x

x
+
x
=42
x
=(42-
x
) 2
x
+
x
=42


x
=2(42-
x
) (依据“全或42-
x
=2
x
(依据“全
(依据“下半场得42
场得分是上分”)
半场的一
半”或“上
半场得分是
下半场的2
倍”)
(依据“下半场得42
场得分是上分”)
半场的一
半”或“上
半场得分是
下半场的2
倍”)
虽然这 些方程之间可以通过变形互相转化,但其背后的
思考角度是各不相同的。教学时,要注意引导学生说一说 解
决问题的完整过程,并通过不同解法的交流,养成多角度地
思考问题的习惯。
第二 类是可用抽象的“1”来解决的实际问题。教材利用
修路这一“工程问题”来引入,使学生经历发现和提 出问题、
分析和解答问题的过程。例如,学生会认为题中缺少解题的
信息,此时,教师追问:缺 少什么信息呢?学生会回答:不
知道公路长多少千米。这样就很自然地引导学生假设公路总
长为 某个具体的长度,把新问题转化为旧问题,加以解决。
通过学生之间的交流,发现虽然假设的公路具体长 度不同,
得到的结果却是相同的,使学生产生探究原因的欲望。通过
分析,发现不管公路总长是 多少,两队每天修的长度分别占


总长度的和是不变的,这也是能得到相同结果的内在原因 。
此基础上,进一步抽象,可用“1”来表示公路总长。
教学此例时,要注意以下几点。 < br>第一,这里不是要系统地教学各类“工程问题”,教学
时不要对“工程问题”多变式、深挖掘、广 训练。
第二,不必要求学生死记硬背“工作总量÷工作效率=工
作时间”等数量关系,只要会 用具体的语言描述出来就可以,
如“公路的总长÷每天修的长度=需要修的天数”。
第三,最 重要的不是让学生记住结论,尤其不要把列出
“1÷(+)”这一最简形式的算式作为教学的终极目标, 形
成“解题套路”,而是要让学生经历问题解决的全过程,掌
握问题解决的技能和策略。例如, 假设的方法是解决此类问
题的重要策略,也是数学学习中常用的有效方法。如果学生
认为把公路 总长假设成一个具体的量来解决更易于理解,要
允许学生继续采用这种一般性的解题思路。把公路总长假 设
成“1”(而不是1 km),需要学生具有更抽象的数学思维。
第四,要结合问题解决, 使学生体会和运用基本的数学
思想和方法,积累基本的活动经验。在此例的教学中,要注
意体现 变中有不变的思想、抽象的思想、模型的思想。为了
让学生进一步体会模型化的思想,教材特意在练习中 编排了
运输问题、行程问题、泄洪问题、种树问题,使学生发现:
虽然这些问题的现实背景各不 相同,但其背后的数量关系是


相同的。数学教学的一个重要任务就是让学生学会透过纷繁
芜杂的现实情境的表象,找出体现数量之间本质关系的数学
模型。
(二)具体编排
1.倒数的认识
(1)例1。
教材编排了几组乘积为1的乘法算式,使学生通过计 算、
观察、讨论等活动,归纳出它们的共同规律,引出倒数的定
义,并用实例突出“互为倒数” 的含义。然后引导学生思考
互为倒数的两个数有什么特点;如果两个数都是分数,那么
这两个数 的分子、分母交换位置;如果一个是整数,那么另
一个分数的分子是1,分母就是该整数,为例1的学习 打下
基础。
例1教学求倒数的方法。教材先安排找倒数的活动,初
步体验找倒数的方 法:调换分子、分母的位置。在总结求倒
数的方法时,要分三种情况:求分数的倒数;求整数的倒数;< br>1和0的倒数的问题。对于1和0的倒数问题,因为1×1=1,
所以1的倒数是1;因为0与任 何数相乘都不可能是1,所
以0没有倒数。
2. 分数除法
(1)例1。


例1以折纸活动为载体,利用数形结合的方法帮助学生
理解分数除以整数的算理。教材 分两个层次编排:先解决分
数的分子能被整数整除的特殊情况;再引出分子不能被整数
整除的情 况。第一个问题是分子能被整数整除的情况,有两
种思考方法,方法一是利用整数除法的意义,将分数除 法转
化为整数除法理解并计算;方法二是利用分数的意义,将问
题转化为求的来理解和计算。在 此基础上提出第二个问题,
凸显方法一的局限性和方法二的一般适用性。
教材体现了让学生经 历由特殊到一般的探索过程,进而
理解把一个数平均分成几份,求其中的1份,就是求这个数
的 几分之一是多少,渗透转化的数学思想。
(2)例2。
例2研究一个数除以分数的计算,包 括整数除以分数和分
数除以分数两种情况。在解决“谁走得快些”这一实际问题
的过程中,自然 地列出两个算式,列式的依据是“路程÷时
间=速度”的数量关系,和以前所不同的是路程、时间由整< br>数换成了分数。由于学生对这一数量关系比较熟悉,所以列
出分数除法算式不会感到困难,有利于 把教学重点集中于计
算方法的探索与理解。
理解“2÷”的算理是本例的重点。教材采用画线 段图的
直观方式呈现推算的思路:由于1小时里有3个小时,所以
可以先求出小时走了多少千米 ,即先求出小时走的2km的一


半(即)。由于有了直观图的支持,降低了学生对2×× 3
中每一部分含义的理解难度,顺利完成从“除以一个分数”
到“乘上这个分数的倒数”的转化 。
通过求小红平均每小时走多少路程引出分数除以分数的
算式。由于有了整数除以分数的算理 的铺垫,教材在这儿没
有呈现线段图,而是通过提问“为什么写成×”,引导学生
通过迁移类推 ,自行阐述算理。
以提问的方式,引导学生总结分数除法的一般算法,使
学生看到,不管被除 数是整数还是分数,不管除数是整数还
是分数,只要除数不为0,都可以转化成乘上除数的倒数来
计算。并启发学生用自己的方式表示这一算法。
(3)例3。
本例以学生熟悉的生活情境 为素材引出分数混合运算。
分数混合运算的顺序问题已在“分数乘数”单元解决了,学
生在此学 习分数混合运算,既是分数四则运算的综合应用,
也为后面学习利用分数四则运算解决实际问题打下基础 。
教材提供了两种不同的解决方法,体现了不同的分析思
路。先分步列式,再列综合算式解答 。对于不带括号的分数
乘除法混合运算,既可以从左至右按步骤计算,也可以直接
转化为分数连 乘后同时约分计算。
(4)例4。


本例是让学生解决简单的“已知一个数的 几分之几是多少,
求这个数”的实际问题。这类问题是分数乘法中“求一个数
的几分之几是多少 ”的逆向问题。
教材通过问题解决的三大步骤让学生经历问题解决的全
过程。其中,“阅读与 理解”让学生自行分析题意,弄清楚
条件和问题,选取有效信息。在这里,成人体内水分与体重
的关系是一个多余条件,需要学生加以辨别。
这类问题如果用算术方法解,较难理解,学生往往难以判
断谁是单位“1”,数量关系也较复杂。因此,教材根据分
数乘法的意义,利用已有知识画线段 图,找到数量关系,列
出方程,并解出方程。这样思考问题的思路与相应的分数乘
法问题完全一 致,只是参与列式的是未知数而已。
“回顾与反思”部分中检验结果的合理性是相应乘法数量
关系的二次应用。同时,对有效信息的选取的反思,以及对
列方程方法价值的体会,也是反思的重点。
(5)例5。
本例是“求比一个数多(或少)几分之几的数是多少”的
逆向问题,是 以例4为基础,把条件稍作改变,形成稍复杂
的问题。
用算术方法解决这样的实际问题,不仅 需要逆向思考,还
要把“比一个数多(少)几分之几”,转化为“是一个数的
几分之几”,比较 抽象,思维难度大。用方程方法解决,可


以列出形如的方程,也可以列出形如的方程,前 者仍然要经
历从“多(少)几分之几”到“是几分之几”的转化,后者
只要根据一个数加(减) 增加部分等于增加(减少)后的数,
就能列出方程。这样的等量关系,学生容易理解。因此,教
材选择符合学生顺向思维的思路,给出多样化的解题方法。
为了帮助学生思考,教材提示“先画线段图 看看”,并
给出了完整的图示,为学生分析、理解等量关系提供直观支
柱。然后得出不同的等量 关系,并据此列方程解答。
回顾与反思的目的在于反思问题解决的过程是否合理,
检验解答是否正确,方法可以多样化。
(6)例6。
本例中包括两个未知量,题中给出了这两个未知量之间
的两种关系,要 求学生根据这样的关系列方程解答。由于这
两种关系中,一种是两个量之间的倍数关系,另一种是两个< br>量之间的和或差的关系,因此,这样的问题过去被称为“和
倍问题”“差倍问题”。
教 材以篮球比赛上、下场得分为素材,引出含有两个未知
数的实际问题。这样的问题如果用算术方法解决, 需要逆向
思考,比较抽象,思维难度大,容易出错,列方程来解决更
符合顺向思维。


教材给出了两种解法,区别在于先设哪个量为未知数,
然后利用两个量的数量关系,用代 数式表示出另一个量。除
了教材上的示例以外,还有其他的列方程方法。
(7)例7。
本例是一类特殊的实际问题,使学生通过尝试、分析,
找到本质的数量关系,进而解决问题。
本例采用的素材是“工程问题”,但并不是要求学生解
决形形色色的“工程问题”,而是要借此 让学生经历利用自
主探究解决问题的过程,掌握用假设、验证等方法解决问题
的基本策略,让学 生体会模型思想。
例题的呈现顺应学生的思维过程。“阅读与理解”部分
在引导学生从题目中 获取已知条件和问题的同时,在学生利
用已有经验解题时很自然地产生疑问:道路的总长未知,怎
么办?接下来就在“分析与解答”部分,提出思考的方向:
如果道路总长是已知的,这个问题就转化成 以前学过的旧问
题了。那是否可以假设一个长度呢?这就是一个猜想、尝试
的过程,学生在这一 过程中经历了发现问题、提出问题。通
过假设,可以把抽象问题具体化,使复杂的数量关系明显化
或简单化。不同的学生假设的长度不同,又体现了解决问题
方法的开放性和多样化。
四、教学建议


1.加强直观教学,结合实际操作和直观图形,帮助学生
理解算理,掌握方法。
2.加强分数乘、除法的沟通与联系,促进知识正迁移,
提高解决实际问题的能力。

越光宝盒经典台词-倾听文字的声音


个人小额投资理财-如果我是你的男朋友


无线路由桥接-情侣签名一对


八年级上册英语课本-开学第一天的作文


剪纸资料-最后一次歌词


舒适的近义词-租房协议范本


鹌鹑蛋的做法-手抄报的花边


贺电-入团申请书格式范文