等差数列专题(汇编)
上海财经大学历年录取分数线-哈里波特与死亡圣器
精品文档
等差数列专题
一、等差数列知识点回顾与技巧点拨
1.等差数列的定义
一般地,如果一个数列从
第2项起,每一项与它的前一项的差等于同一个常数,那
么这个数列就叫做等差数列,这个常数叫做等差
数列的公差,公差通常用字母
d
表
示.
2.等差数列的通项公式
若等差数列{
a
n
}的首项是
a
1
,公差是
d,则其通项公式为
a
n
=
a
1
+(
n
-1)
d
=(
n
-
m
)
d
=
p<
br>.
3.等差中项
如果三个数
x
,
A
,
y
组成等差数列,那么
A
叫做
x
和
y
的等差中项,如
果
A
是
x
和
x
+
y
y
的等差中项
,则
A
=.
2
4.等差数列的常用性质
*
(1)通项公
式的推广:
a
n
=
a
m
+(
n
-
m
)
d
(
n
,
m
∈N).
(2)若{<
br>a
n
}为等差数列,且
m
+
n
=
p
+
q
,
*
则
a
m
+
a
n
=
a
p
+
a
q
(
m
,
n
,
p
,
q
∈N).
*
(3)若{
a
n
}是等差数列,公差为
d
,则
a
k
,
a
k
+
m
,
a
k
+2
m
,…(
k,
m
∈N)是公差为
md
的等
差数列.
(4)数列<
br>S
m
,
S
2
m
-
S
m
,<
br>S
3
m
-
S
2
m
,…也是等差数列. (5)
S
2
n
-1
=(2
n
-1)
a
n
.
(6)若
n
为偶数,则
S
偶
-S
奇
=;
2
若
n
为奇数,则
S
奇<
br>-
S
偶
=
a
中
(中间项).
5.等差数列的前
n
项和公式
na
1
+
a
n
若已知首项
a
1
和末项
a
n
,则
S<
br>n
=,或等差数列{
a
n
}的首项是
a
1
,
公差是
d
,
2
nn
-1
则其前
n
项和公式
为
S
n
=
na
1
+
d
.
2
6.等差数列的前
n
项和公式与函数的关系
2
2
7.最值问题
在等差数列{
a
n
}中,
a
1
>0,
d
<0,则
S
n存在最大值,若
a
1
<0,
d
>0,则
S
n<
br>存在最
小值.
一个推导
利用倒序相加法推导等差数列的前
n
项和公式:
S
n
=<
br>a
1
+
a
2
+
a
3
+…+
a
n
,①
S
n
=
a
n
+
an
-1
+…+
a
1
,②
na
1
+<
br>a
n
①+②得:
S
n
=.
2
两个技巧
已知三个或四个数组成等差数列的一类问题,要善于设元.
(1)若奇数个数成等差数列且和
为定值时,可设为…,
a
-2
d
,
a
-
d
,
a
,
a
+
d
,
a
+2
d
,….
(2)若偶数个数成等差数列且和为定值时,可设为…,
a
-3
d
,
a
-
d
,
a
+
d
,
a
+3
d
,…,
其余各项再依据等差数列的定义进行对称设元.
四种方法
等差数列的判断方法
(1)定义法:对于
n
≥2的任意
自然数,验证
a
n
-
a
n
-1
为同一常数;
精品文档
nd
d
d
S
n
=
n
2
+
a
1
-
n
,
数列{
a
n
}是等差数列的充要条件是
S
n
=
An
2
+
Bn
(
A
,
B
为常数).
精品文档
(2)等差中项法:验证2
a
n
-1=
a
n
+
a
n
-2
(
n
≥3
,
n
∈N)都成立;
(3)通项公式法:验证
a
n
=pn
+
q
;
2
(4)前
n
项和公式法:验证
S
n
=
An
+
Bn
.
注:
后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.
*
回顾:
1.已知等差数列{a
n
}中,a
3
=9,a
9
=
3,则公差d的值为( )
A.
1
B.
C.
D. ﹣1
2.已知数列{a
n
}的通项公式是a
n
=2n+5,则此数列是(
)
A.以7为首项,公差为2的等差数列 B. 以7为首项,公差为5的等差数列
以5为首项,公差为2的等差数列 C.D. 不是等差数列
3.在等差数列
{a
n
}中,a
1
=13,a
3
=12,若a
n<
br>=2,则n等于( )
23 24 25 26
A.B.
C. D.
4.两个数1与5的等差中项是( )
1 3 2
A.B. C. D.
5.(2005•黑龙江)如果数列{a
n
}是等差数列,则( )
A.B. C.
a
1
+a
8
>a
4
+a
5
a
1
+a
8
<a
4
+a
5
a
1
+a
8
=a
4
+a
5
D.
a
1
a
8
=a
4
a
5
考点1:等差数列的通项与前n项和
题型1:已知等差数列的某些项,求某项
【解题思路】给项求项问题,先考虑利用等差数列的性质,再考虑基本量法
【例1】已知
a
n
为等差数列,
a
15
8,a
60
20
,则
a
75
a
15
a
1
14d8
644
a
1
,d
解:
方法1:
aa
59d20
1515
1
60
644
7424
1515
aa
15
2084
方法2:
d
60
,
60154515
4
a75
a
60
(7560)d201524
15
a
75
a
1
74d
方法3:令
a
n
anb
,则
15ab8
168a,b
453
60ab20
168
24
45
3
a
75
75ab75
方法4:
<
br>a
n
为等差数列,
a
15
,a
30
,a
45
,a
60
,a
75
也成等差数列,
设其公差为
d
1
,则
a
15
为首项,
a
6
0
精品文档
精品文档
为第4项.
a
60
a
15
3d
1
2083dd
1
4
a
75
a
60
d
1
20424
方法5:
a
n
为
等差数列,
(15,
a
15
),(60,
a
60
),(75,
a
75
)
三点共线
a
60
a
15
a
75
a
60
208
a
75
20
a
75
24
60
1575604515
对应练习:1、已知
2
、已知
a
n
为等差数列,
a
m
p,
a
n
q
(
m,n,k
互不相等),求
a
k
.
5
个数成等差数列,它们的和为
5
,平方和为
165
,求这
5
个数.
题型2:已知前
n
项和
S
n
及其某项,求项数.
【解题思路】
⑴
利用等差数列的通项公式
求项数
a
n
a<
br>1
(n1)d
求出
a
1
及
d
,代入S
n
可
n
;
⑵利用等差数列的前4项和及后4项和
求出
【例2】已知
a
1
a
n
,代入
S
n
可求项数
n
.
S
n
为等差数列
an
的前
n
项和,
a
4
9,a
9<
br>6,S
n
63
,求
n
解:设等差数列的首项
为
a
1
,公差为
d
,则
a
1
3d9
a
1
18,d3
a
1
8d6
S
n
18n
这个数列的项数
4.已知
3
n(n1)63n
1
6,n
2
7
2
对应练习:3、若一个等差数列的前4
项和为36,后4项和为124,且所有项的和为780,求
n
.
S
n为等差数列
a
n
的前
n
项和,
a
1
1,a
4
7,S
n
100
,则
n
.
题型3:求等差数列的前n项和
【解题思路】(1)利用S
n
求出
a
n
,把绝对值符号去掉转化为等差数列的求和问题.
精品文档
精品文档
(2)含绝对值符号的数列求和问题,要注意分类讨论.
【例3】已知
S
n
为等差数列
a
n
的前
n
项和,
S
n
12nn
2
.
(1) <
br>⑵求
⑶求
解:
a
1
a
2
a<
br>3
;
a
1
a
2
a
3
a
10
a
1
a
2
a
3
an
S
n
12nn
2
,
;
.
当
n1
时,
a
1
S
1
121
11
,
当
n2
时,
a
n
S
n
S
n1
(12nn
2
)12(n1)(n1)
2
132n
,
当
n1
时,
132111a
1
,
a
n
132n
.
a
n
132
n0
,得
n
由
时,
13
,
当
1n6
时,
a
n
0
;当
n7
2
a
n
0
.
(1)
⑵
a
1
a
2
a
3
a
1
a
2
a
3
S
3
1233
2
27
;
a
1
a
2
a
3
a
10
a
1
a2
a
3
a
6
(a
7
a
8
a
9
a
10
)
2S
6
S
10
2(1266
2
)(1
21010
2
)52
;
3)(
1n6
时,a
1
a
2
a
3
a
n
a<
br>1
a
2
a
3
a
n
12nn<
br>2
,
当
n7
时,<
br>a
1
a
2
a
3
a
n
a
1
a
2
a
3
a
6
(a
7
a
8
a
n
)
2S
6
S
n
2(1266
2
)(12
nn
2
)n
2
12n72.
对应练习:5、已知
S
n
为等差
数列
a
n
的前
n
项和,
S
1
0
100,S
100
10
,求
S
110
.
精品文档
精品文档
考点2
:证明数列是等差数列
【名师指引】判断或证明数列是等差数列的方法有:
1、定义法:
列;
2、中项法:
a
n1
a
n
d
(
nN
,
d
是常数)
a
n
是等差数
2a
n1
a
n
a
n2
(
nN
)
a
n
是等差数列;
a
n
knb
(
k,b
是常数)
a
n
是等差数列;
S
n
An
2
Bn
(
A,B
是常数,
A0
)
a
n
3、通项公式法:
4、项和公式法:
是等差数列.
【例4】已知S
n
为等差数列
a
n
的前
n项和,
b
n
S
n
(nN
).
n
求证:数列
b
n
是等差数列. <
br>解:方法1:设等差数列
a
n
的公差为
d
,
S
n
na
1
1
n(n1)d
,
2
b
n
S
n
1
a
1
(n1)d
n2
11d
b
n1
b
n
a
1
nda
1
(n1)d
2
22
数列
b
n
是等差数列.
(常数)
方法2:
b
n
b
n1
S
n
1
a
1
(
n
1)
d
,
n2
1
1
a
1
nd
,
b
n2
a
1
(n1)d
22
b
n2
b
n
a
1
11
(n1)da
1
(n1)d2a
1
nd2b
n1
,
22
数列
b
n
是等差数列. 对应练习:6、设
S
n
为数列
a
n
的前
n
项和,
S
n
pna
n
(nN
)
,
a
1
a
2
.
(1) 常数
p
的值;
(2)
证:数列
a
n
是等差数列.
精品文档
精品文档
考点3 :等差数列的性质
【解题思路】利用等差数列的有关性质求解.
【例5】1、已知
2、知
S
n
为等差数列
a
n
的前
n
项和,
a
6
100
,则
S
11
;
为等差数列
S
n<
br>
a
n
的前
n
项和,
S
n
m,S
m
n(nm)
,则
S
mn
.
解:1、
S
11
11(a
1
a
1
1
)
112a
6
11a
6
1100
;
22
S
n
An
2
Bn
,则 2、方法1:令<
br>
An
2
Bnm
A(n
2
m
2)B(nm)mn
.
2
AmBmn
nm
,
A(nm)B1
,
S<
br>mn
A(mn)
2
B(mn)(mn)
;
方法2:不妨设
mn
S
m
S
n
a
n1
a
n2
a
n3
a
m1
a
m
.
(mn)(a
n1
a
m
)
nm
2
a
1
a
mn
a
n1
a
m
2
,
S
mn
方法3:
(mn)(a
1
amn
)
(mn)
;
2
n
S
n
a
n
是等差数列,
为等差数列
S
mn
S
m
,m,,mn,
三点共线.
mn
m
S
n,
n
n
精品文档
精品文档
S
mn
nmn
mn
mnm
S
mn
(mn).
mnn
对应练习:7、含
2n1
个项的等差数列其奇数项的和与
偶数项的和之比为( )
A.
8.设
2n1
n1n1n1
B.
C.
D.
nn
n2n
分别是等差数列
S
n
、
T
n
a<
br>n
、
a
n
的前
n
项
和,
S
n
T
n
7n2
n3
,则a
5
.
b
5
考点
【解题思路】1、利用
2、求出
4:
等差数列与其它知识的综合
a
n
与
S
n
的关系式及等差数列的通项公式可求;
T
n
后,判断
T
n
的单调性.
【例6】已知
S
n
为数列
a
n
的前
n
项和,
S
n
1
2
1
1
nn
;数列
b
n
满足:
b
3
11
,
22
b
n2
2b
n
1
b
n
⑴
数列
,其前
9
项和为
153.
a
n<
br>
、
b
n
的通项公式;
为数列
⑵设
T
n
c
n
的前
n
项和,
c
n
6
(2a
n
11)(2b
n1)
,求使不等式
k
对
nN
都成立的最大正整
数
k
的值.
57
1
2
11
解:⑴
S
n
n
n
,
22
T
n
当
n1
时,<
br>a
1
S
1
6
;
当
a
n
S
n
S
n1
n2
1111
11
n
2
n(n1)
2
(n1)n5
<
br>2222
n1
时,
156a
1
,
a
n
n5
;
时,
当
精品文档
精品文档
b
n22b
n1
b
n
b
n1
b
n
b
n2
2
,
b
n
<
br>是等差数列,设其公差为
d
.
b
1<
br>2d11
b
1
5,d3
, 则
9b3
6d153
1
b
n
53(n1)3n2<
br>.
⑵
c
n
66
(2a
n
11)(2b
n
1)
2(n5)11
2(3n2)1
211
(2n1)(2n1)2n12n1
11111111
T
n
(1)()()
()1
3
35572n12n12n1
nN
,
Tn
是单调递增数列.
当
n1
时,
<
br>T
n
min
T
1
1
T<
br>n
12
33
kk2k
对
n
N
都成立
T
n
min
k38
5757357
所求最大正整数
k
的值为
37
.
对应练习:9.已知
S
n
为数列
a
n
的前
n
项和,
a
1
3
,
S
n<
br>S
n1
2a
n
(n2)
.
⑴
数列
⑵数列
a
n
的通项公式;
a
k1
对任意不小于
k
的正整数都
a
n
中是否存在正整数
k
,使得不等式
a
k
成立?若存在,求最小的正
整数
k
,若不存在,说明理由.
课后练习:
1.(2010广雅中学)设数列
项和,则
A.
且<
br>a
2
8
,
a
15
5
,
Sn
是数列
a
n
的前
n
a
n
是等差数列,
S
10
S
11
B.
S
10
S
11
C.
S
9
S
10
D.
S
9
S
10
2.在等差数列
a
n
中,
a
5
120
,则
a
2
a
4
a
6
a
8
.
精品文档
精品文档
3.数列
a
n
中,
a
n
2n49
,当数列
a<
br>n
的前
n
项和
S
n
取得最小值时,
n
.
4.已知等差数列
是 .
5.设
数列
a
n
共有
10
项,其奇数项之和为
10
,偶数项之和为
30
,则其公差
a
n
<
br>中,
a
1
2,a
n1
a
n
n1<
br>,则通项
a
n
.
6.从正整数数列
1,2,3,4,5,
中删去所有的平方数,得到一个新数列,则这个新数列的第
1964
项是 .
答案与解析:
对应练习:
1、【解析】
a
m
a
n
a
k
a
n
pq
a
k
q
p(kn)q(mk)
a
k
mnk
nmnknmn
2、【解析】设这
5
个数分别为
a2d
,ad,a,ad,a2d.
则
(a2d)(ad)a(ad
)(a2d)5
a1
2222222<
br>
(a2d)(ad)a(ad)(a2d)165
5a
10d165
a1,d4
当
a1,d4
时,这5
个数分别为:
7,3,1,5,9
;
当
a1,d
4
时,这
5
个数分别为:
9,5,1,3,7.
解得
3、【解析】
a
1
a
2
a
3
a
4
36,
a
n
a
n1
a<
br>n2
a
n3
124
a
1
a
n
a
2
a
n1
a
3
an2
a
4
a
n3
4(a
1
a
n
)160a
1
a
n
40
S
n
n(a
1
a
n
)<
br>78020n780n39
2
aa
1
71<
br>4、【解析】设等差数列的公差为
d
,则
d
4
2
413
1
S
n
nn(n1)2100n10<
br>.
2
11
a
1
10a
1
45d100
50
5、【解析】方法
1:设等差数列的公差为
d
,则
100a
1
4950d10
d
1099
100
1
<
br>S
110
110a
1
110109d110
;
2
90(a
11
a
100
)
方法2:
S
100
S
10
90
a
11<
br>a
100
2
2
110(a
1
a
110
)110(a
11
a
100
)
S<
br>110
110
22
6、【解析】⑴
S<
br>n
pna
n
,
a
1
a
2
,
a
1
pa
1
p1
精品文档
精品文档
⑵由⑴知:
当
S
n
na
n
,
n2<
br>时,
a
n
S
n
S
n1
na
n
(n1)a
n1
(n1)(a
n
a
n1<
br>)0
,
a
n
a
n1
0(n2
)
,
数列
a
n
是等差数列. 7、【解析】(本两小题有多种解法)
S
奇
a
1
a
3
a
5
a
2n1
(n1)(a<
br>1
a
2n1
)
2
n(a
2
a
2n
)
,
a
1
a
2n1
a
2
a
2n
2
S
偶
a
2
a
4
a
6
a
2n
S
奇
n1
.
选B.
S
偶
n
8、【解析
】
a
n
S
2n1
7(2n1)214n5
a
145565
填
5
bn
T
2n1
(2n1)32n2b
5
25212<
br>65
.
12
9、【解析】⑴当
n2
时,
S
n
S
n1
2a
n
S
n
S
n1<
br>2(S
n
S
n1
)
111
<
br>S
n
S
n1
2
,且
11
1
,
a
n
是以
为公
差的等差数列,
S
1
3
2
其首项为
1
.
3
11153n6
(n1)S
n
S
n
S
1
2653n
当
n2
时,
a
n
118
S
n
S
n1
<
br>2(3n8)(3n5)
3(n1)
1818
<
br>18
a
1
,
当
n1
时,
(n2)
;
(38)(35)10
(3n8)(3n5)
⑵ a
k
a
k1
18
25
8
0<
br>,得
k
或
k
,
(3k8)(3k5)(3k2)
333
当
k3
时,
a
k
a
k1
恒成立,
所求最小的正整数
k3.
a
2
a
16
a2
a
15
d(ad)a
15
,S
10
2
S
9
S
10
222
课后练习
:1、
【解析】C.
S
9
精品文档
精品文档
另法:由
计算知
a
2
8,
a
15
5
,得
d
5(8)1369
,
,
a
1
a
2
d
15877<
br>S
9
S
10
2、
【解析】
480
a
2
a
4
a
6
a
8
4a
5
480.
3、
【解析】
24
由
a
n
2n49
知
a
n
是等差数列,
a
n
0n25.
n24.
法.
精品文档
4、【解析】
4
已知两式相减,得
5d20d4.
5、【解析】
1
2
n(n1)1
利用迭加法(或迭代法),也可以用归纳—猜想—证明的方
6、【解析】
2008