新人教版九年级数学第一章直角三角形的边角关系

别妄想泡我
898次浏览
2021年01月02日 02:36
最佳经验
本文由作者推荐

啊q-诗的分类

2021年1月2日发(作者:宁超男)


1、你能证明它们吗(一)
 教学目标:
1. 了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。
2. 经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性
质定理和判定定理。
3. 掌握证明的基本步骤和书写格式。

 教学重点、难点:
 重 点:了解作为证明基础的几条公理的内容,通过等腰三角形性质证明,掌握证
明的基本步骤和书写格式。
 难点:能够用综合法证明等腰三角形的关性质定理和判定定理(特别是证明等腰
三角形性质 时辅助线做法)。

 教学过程:
一. 复习:
1、什么是等腰三角形?
2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。
3、试用折纸的办法回忆等腰三角形有哪些性质?
二. 新课讲解:
在八年级《证 明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面
的公理和已经证明的定理,我们还 可以证明有关三角形的一些结论。
同学们和我一起来回忆上学期学过的公理
本套教材选用如下命题作为公理 :
 1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;
 2.两条平行线被第三条直线所截,同位角相等;
 3.两边夹角对应相等的两个三角形全等; (SAS)
 4.两角及其夹边对应相等的两个三角形全等; (ASA)
 5.三边对应相等的两个三角形全等; (SSS)
 6.全等三角形的对应边相等,对应角相等.
由公理5、3、4、6可容易证明下面的推论:
推论 两角及其中一角的对边对应相等的两个三角形全等。(AAS)
定理:等腰三角形的两个底角相等。
这一定理可以简单叙述为:等边对等角。
已知:如图,在ABC中,AB=AC。
求证:∠B=∠C
证明:取BC的中点D,连接AD。
∵AB=AC,BD=CD,AD=AD,
∴△ABC△≌△ACD (SSS)
∴∠B=∠C (全等三角形的对应边角相等)
(让同学们通过探索、合作交流找出其他的证 明方法。做∠
BAC的平分线,交BC边于D;过点A做AD⊥BC。学生指出该定理的条件和结论,< br>写出已知、求证,画出图形,并选择一种方法进行证明。)


想一想:
在上图中,线段AD还具有怎样的性质?为什么?由此你能得到什么结论?
让学生回顾前面的 证明过程,思考线段AD具有的性质和特征,讨论图中存在的相
等的线段和相等的角,发现等腰三角形性 质定理的推论,从而得到结论,这一结合
通常简述为“三线合一”。
推论 等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。

三. 随堂练习:
课本P4 1,2,
(引导学生分析证明方法,学生动手证明,写出证明过程。)

四. 课堂小结:
通过本课的学习我们了解了作为基础的几条公理的内容,掌握证明的基本步骤
和书写格式。

五. 作业:
P5 习题1.1 2. 3.

六. 教后反思:
















1、你能证明它们吗(二)
 教学目标:
1. 进一步了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。
2. 经历“探索-发 现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条
腰上的中线(高)、两底角的平分线相等 ,并由特殊结论归纳出一般结论。
3. 能够用综合法证明等腰三角形的判定定理。
4. 了解反证法的推理方法,能运用反证法证明简单的命题。


5. 会运用“等角对等边”解决实际应用问题及相关证明问题。
 教学重点、难点:
 重点 :正确叙述结论及正确写出证明过程。熟悉作为证明基础的几条公理的内容,
通过学习,掌握证明的基本 步骤和书写格式。
 难点:等腰三角形的定理应用及由特殊结论归纳出一般结论。
 教学过程:
一. 复习回顾:
你知道等腰三角形具有怎样的性质吗?、
二. 引导探索:
等腰三角形顶角的平分线、底边上的中线和高线具有上述的性质,那么,两底角的
平分线、两腰上的中线和高线又具有怎样的性质呢?
(提出问题,激发学生探究的欲望。学生猜想)
探究中发现:在等腰三角形中做出两底角的平分线,你会发现图中有那些相等的线
段?你能用文 字叙述你的结论吗?
(学生动手画图、探索发现相等的线段并思考为什么相等)
三. 例题讲解
(1) 例1 证明:等腰三角形两底角的平分线相等。
(引导学生分清条件和结论、画图、写出已知、求证。)
已知:如图,在△ABC中,AB=AC,BD,CE是
△ ABC的角平分线。
求证:BD=CE(一生口述证明过程,然后写出证明过程。)
分析如下

证明:(略)
提问:此题还有其它的证法吗?
(2) 你能证明等腰三角形两条腰上的中线相等吗?高呢?
(引导学生分清条件和结论、画图、写出已知、求证并证明。其它证法合作交流完
成。)
4、议一议1:
在上图的等腰△ABC中,如果∠ABD=13∠ABC, ∠ACE=13∠ACB,那么BD=
CE吗?如果∠ABD=14∠ABC, ∠ACE=14∠ACB呢?由此你能得到一个什么结
论?
(根据图形引导学生分析归纳得出 一般结论。学生分组思考、交流,在充分讨论的
基础上得出一般结论写出证明过程。)
(3) 如果AD=12AC,AE=12AB, 那么BD=CE吗?如果AD=13AC,AE=


13AB, 呢?由此你能得到一个什么结论?
议一议2:
把“等边对等角”反过来还成立吗?你能证明?
定理证明
已知:在ΔABC中∠B=∠C
求证:AB=AC (引导学生证明定理)
5、想一想:
小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等 ,你认为
这个结论成立吗?如果成立,你能证明它?
证明参考P8
反证法:先假设 命题的结论不成立,然后推导出与定义、公理、已知条件相矛盾的
结果,从而证明命题的结论一定成立的 证明方法。
四. 随堂练习
用反证法证明:经过直线外一点,有且只有一条直线与这条直线平行。
五. 课堂小结:
(1) 归纳判定等腰三角形判定有几种方法,
(2) 证明两条线段相等的方法有哪几种。(讨论、交流)
(3) 通过这节课的学习你学到了什么知识?了解了什么证明方法?
掌握证明的基本步骤和书写格式。经历“ 探索-发现-猜想-证明”的过程。能够
用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平 分线相等,并由特殊
结论归纳出一般结论。等腰三角形的判定定理。了解反证法的推理方法。
六. 作业:
课本p9 习题1.2 2. 3.
七. 教后反思:



1 你能证明他们吗?(三)
 教学目标:
1. 进一步学习证明的基本步骤和书写格式。
2. 掌握证明与等边三角形、直角三角形有关的性质定理和判定定理。
 教学重点、难点:关于综合法在证明过程中的应用。
 教学过程:
一. 温故知新
1、已知:∠ABC,∠ACB的平分线相交于F,过F作DE∥BC, 交AB于D, 交AC于
E
(1) 找出图中的等腰三角形
(2) BD,CE,DE之间存在着怎样的关系?
(3) 证明以上的结论。
2、复习关于反证法的相关知识
练习:
证明:在一个三角形中,至少有一个内角小于或等于60°。


(笔试,进一步巩固学习证明的基本步骤和书写格式)
学一学
探索问题:①一个等腰三角形满足什么条件时便成为等边三角形?
②你认为有一个角等于60 °的等腰三角形是等边三角形吗?你能证明你的思路
吗?(把你的思路与同伴进行交流。)
定理:有一个角等于60°的等腰三角形是等边三角形。
1、做一做:用两个含30°角的三角尺,能 拼成一个怎样的三角形?能拼成
一个等边三角形吗?说说你的理由。
由此你能想到,在直角三 角形中,30°角所对的直角边与斜边有怎样的大小
关系?能证明你的结论吗?
(提示学生根据两个三角尺拼出的图形发现结论,并证明)
证明:在△ABC中,∠ACB=90°,∠A=30°,则∠B=60°
延长BC至D,使CD=BC,连接 AD
∵∠ACB=90°
∴∠ACD=90°
∵AC=AC
∴△ABC≌△ADC(SSS)
∴AB=AD(全等三角形的对应边相等)
∴△ABD是等边三角形
11
∴BC=
2
BD=
2
AB
得到的结论:
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一
半。
二. 例题学习
D
等腰三角形的底角为15°,腰长为2a ,求腰上的高。
A
已知:在△ABC中,AB=AC=2a,∠ABC=∠ACB=15°
度,CD是腰AB上的高
C
求:CD的长
解:∵∠ABC=∠ACB=15°
B
∴∠DAC=∠ABC+∠ACB=15°+15°=30°
11
∴CD=
2
AC=
2
×2a=a(在直角三角形中,如果一个锐角等于30°,那么它所
对的直角边等于斜边的一半)
三. 随堂练习:
课本p13页 随堂练习 1. 2.
四. 课堂小结:
通过这节课的学习你学到了什么知识?了解了什么证明方法?
(学生小结:掌握证明与等边三角形、直角三角形有关的性质定理和判定定理)
五. 作业:
课本P14页 习题1.3 1. 2.
六. 板书设计:



1、你能证明它们吗(三)

有一个角等于60°的等腰三角形 在直角三角形中,如果一个锐角等于30°,

是等边三角形。 那么它所对的直角边等于斜边的一半。







七. 教后反思:










2.直角三角形(一)

 教学目标:
1. 进一步掌握推理证明的方法,发展演绎推理能力。
2. 了解勾股定理及其逆定理的证明方未能,能够证明直角三角形全等的“HL”判定
定理。
3. 结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命
题不一定成立。
 教学重、难点
 教学过程:
一. 引入:
我们曾经利用数方格和 割补图形的方未能得到了勾股定理。实际上,利用公理及其
推导出的定理,我们能够证明勾股定理。
二. 新课讲解
定理:直角三角形两条直角边的平方和等于斜边的平方。
如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c,

延长CB 至点D,使BD=b,作∠EBD=∠A,并取BE=c,连接ED、AE,则△ABC
≌△BED。
∴∠BDE=90°,ED=a(全等三角形的对应角相等,对应边相等)。
∴四边形ACDE是直角梯形。
11
∴S梯形ACDE =
2
(a+b)(a-b)=
2
(a+b)2


∴∠ABE=180°-∠ABC-∠EBD=180°- 90°=90°
AB=BE
1
∴S△ABC = c2
2
∵S梯形ACDE = S△ABE +S△ABC+ S△BED ,
111111111

2
(a+b)2=
2
c2+
2
ab+
2
ab 即
2
a2+ab+
2
b2=
2
c2+
2
ab+
2
ab
∴a2+b2=c2

反过来,在一个三角形 中,当两边的平方和等于第三边的平方时,我们曾用度量的
方法得出“这个三角形是直角三角形”的结论 ,你能证明这个结论吗?

已知:如图,在△ABC,AB2+AC2=BC2,求证:△ABC是直角三角形。

证明:作出Rt△A’B’C’,使∠A=90°,A’B’=AB,A’C’=AC,则
A’B’2+A’C’2=B’C’2 (勾股定理)
∵AB2+AC2=BC2 ,A’B’=AB,A’C’=AC,
∴BC2= B’C’2
∴BC=B’C’
∴△ABC≌△A’B’C’ (SSS)
∴∠A=∠A’=90°(全等三角形的对应角相等)
因此,△ABC是直角三角形。

定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么
这 两个命题称为另一个命题的互逆命题,其中一个命题称为另一个命题的逆命题。

一个命题是 真命题,它的逆命题却不一定是真命题。如果一个定理的逆命题经过证
明是真命题,那么它也是一个定理 。这两个定理称为互逆定理,其中一个定理称为
另一个定理的逆定理。

三. 随堂练习
课本p18 1.
四. 布置作业
课本P20 习题1.4 1. 2.
五. 教后反思

















2.直角三角形(二)
 教学目标:
1. 了解勾股定理及其逆定理的证明方法
2. 结合具体例子了解逆命题的概念,会识别两个互逆命题、知道原命题成立其逆命
题不一定成立。
 教学重点、难点:
进一步掌握演绎推理的方法。
 教学过程:
一. 温故知新
1、你记得勾股定理的内容吗?你曾经用什么方法得到了勾股定理?
(由学生回顾得出勾股定理的内容。)
定理:直角三角形两条直角边的平方和等于斜边的平方。

二. 学一学
1、问题情境:在一个三角形中,当两边的平方和等于第三边的平方时,我们曾
用度量的方法得出“这个 三角形是直角三角形”的结论,你能证明这个结论
吗?
已知:在ΔABC中,AB
2
+AC
2
=BC
2

求证:ΔABC是直角三角形
(讲解证明思路及证明过程,引导学生领会
证明思路及证明过程,得出结论。)
结论:如果三角形两边的平方和等于第三边
的平方,那么这个三角形是直角三角形。
2、议一议:
观察下列三组命题,它们的条件和结论之间有怎样的关系?
如果两个角是对顶角,那么它们相等。
如果两个角相等,那么它们是对顶角。
如果小明患了肺炎,那么他一定会发烧。
如果小明发烧,那么他一定患了肺炎。
三角形中相等的边所对的角相等。
三角形中相等的角所对的边相等。


(引导学生观察这些成对命题的条件和结论之间的关系,归纳出它们的共性,进一
步得出“互逆定理” 的概念。)

3、关于互逆命题和互逆定理。
(1)在两个命题中,如果一个 命题的条件和结论分别是另一个命题的结论和条件,
那么这两个命题称为互逆命题,其中一个命题称为另 一个命题的逆命题。
(2)一个命题是真命题,它的逆命题却不一定是真命题。如果一个定理的逆 命题经
过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一
个定理称为另 一个定理的逆定理。
(引导学生理解掌握互逆命题的定义。)
三. 随堂练习:
(1) 写出命题“如果有两个有理数相等,那么它们的平方相等”的逆命题,并
判断是否是真命题。
(2) 试着举出一些其它的例子。
(3) 课本p24 1.
四. 读一读“勾股定理的证明”的阅读材料。
五. 课堂小结:本节课你都掌握了哪些内容?
(引导学生归纳总结,互逆定理的定义及相互间的关系。)
六. 布置作业
1) △ABC中,AC=3,BC=4, 则AB= 时,△ABC是直角三角形。
2) 如图(1),折叠长方形的一边AD落在边BC上的点F处,已知AB=8, BC=10, 则EC= 。
3) 下列图形中,不一定是轴对称图形的是( )
A. 角 B. 线段 C. 等腰三角形 D.直角三角形
4) 如图(2),AC⊥BC, ∠AFC=∠AED=90°, AD平分∠BAC, 则有( )
A. △AFG≌△AGC B. △CGD≌△DEB
C. △ADC≌△ADE D. △ADC≌△ABD
5) 如图(3),已知△ABC是等边三角形,点D、E分别在边AC、BC上,且AD=CE, AE、BD交于点P, BQ⊥
AE于Q。求证:BP=2PQ。






七. 板书设计:

1.2 直角三角形

勾股定理: 互逆命题;

逆定理:
互逆定理;




八. 教后反思:





2.直角三角形(三)
 教学目标:
1. 进一步掌握推理证明的方法,发展演绎推理能力。
2. 能够证明直角三角形全等的“HL”判定定理既解决实际问题。
 教学重点、难点:
 重点:能够证明直角三角形全等的“HL”判定定理。并且用纸解决问题。
 难点:证明“HL”定理的思路的探究和分析。-
 教学过程:
一. 复习提问
1、判断两个三角形全等的方法有哪几种?
2、有两边及其中一边的对角对应相等的两个三角 形全等吗?如果其中一个角
是直角呢?请证明你的结论。
(思考交流引导学生分析证明思路,写出证明过程)
二. 探究
两边及其一个角对 应相等的两个三角形全等吗?如果相等说明理由。如果不
相等,应如何改变条件?用自己的语言清楚地说 明,并写出证明过程。
问题1、此定理适用于什么样的三角形?(适用于直角三角形)
2、判定直角三角形的方法有哪些,分别说出来(HL,SAS,ASA,AAS,SSS.
先考虑HL ,在考虑另外四种方法。)
三. 做一做
如图利用刻度尺和三角板,能否做出这个角的角平分线?并证明。
(设计做一做的目的为了让 学生体会数学结论在实际中的应用,教学中就要求
学生能用数学的语言清楚地表达自己的想法,并能按要 求将推理证明过程写出来。)
四. 练习 随堂练习P23--1
判断命题的真假,并说明理由
1、 锐角对应相等的两个直角三角形全等。
2、 斜边及一锐角对应相等的两个直角三角形全等。
3、 两条直角边对应相等的两个直角三角形全等。
4、 一条直角边和另一条直角边上的中线队以相等的两个直角三角形全等。
(对于假的命题要举出反例,真命题要说明理由。教师分析讲解。)
五. 议一议
如图:已知∠ACB=∠BDA=90
0
。要使 ⊿ACB≌⊿BDA,还需要什么条件?把他
们写出来并说明理由。(教学中给予学生时间和空间,鼓励学生积极思考,并在独立

思考的基础上,
通过交流,获得不同的答案,并将一种方法写出证明过程。)
六. 随堂练习
课本p24 习题1.5 1. 2.
七. 小结:
1、本节课学习了哪些知识?
2、还有那一些方面的收获?
八. 作业:
课本P42 复习题 4. 5.
九. 板书设计:











§1.2直角三角形(2)
斜边直角边定理: 如图:已知∠ACB=∠BDA=90




要使 ⊿ACB≌⊿BDA,还需要什么条件?把
他们写出来,并说明理由。


十. 教后反思












3.线段的垂直平分线(一)
 教学目标:


1. 经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力。
2. 能够证明线段垂直平分线的性质定理、判定定理及其相关结论。
3. 能够利用尺规作已知线段的垂直平分线;已知底边及底边上的高,能利用尺规作
出等腰三角形。
 教学重点、难点:
 教学过程:
一. 引入
我们曾利用折纸的办 法得到:线段垂直平分线上的点到这条线段两个端点的距离睛
等,你能证明这一结论吗?
二. 新课讲授
定理:线段垂直平分线上的点到这条线段两个端点的距离相等。
已知:如图,直线MN⊥AB,垂足是C,且AC=BC,P是MN上的任意
一点。
求证:PA=PB。
证明: ∵MN⊥AB, ∴∠PCA=∠PCB=90°
∵AC=BC,PC=PC ∴△PCA≌△PCB(SAS)
∴PA=PB(全等三角形的对应边相等)
想一想,你能写出上面这个定理的逆合题吗?它是真命题吗?如果是请证
明:
定理 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(利用等腰三角形三线合一)
做一做
用尺规作线段的垂直平分线
已知:线段AB 求作:线段AB的垂直平分线。
作法:
1、分别以点A和B为圆心,
1
以大于
2
AB的长为半径作弧,两弧相交于点C和D,
2、作直线CD。
直线CD就是线段AB的垂直平分线。

请你说明CD为什么是AB的垂直平分线,并与同伴进行交流。
因为直线CD与线段AB的交点就是AB的中点,所以我们也用这种方法作线段的中
点。
三. 随堂练习
课本P28 1.
四. 小结
这节课主要从理论上证明了线段的垂直平分线的性质,线段的垂直平分线的画法及
原理。
五. 作业:P28 习题1.6 1. 2. 3.
六. 教后反思:












3.线段的垂直平分线(二)

 教学目标:
1. 经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力。
2. 能够证明线段垂直平分线的性质定理、判定定理及其相关结论。
3. 能够利用尺规作已知线段的垂直平分线;已知底边及底边上的高,能利用尺规作
出等腰三角形。
 教学重点、难点
 教学过程:
一. 引入:
剪一个三角形 纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,
你发现了什么?当利用尺规作出三角 形三条边的垂直平分线时,你是否也发现了同
样的结论?
二. 新课讲授
定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
证明:在△ABC中,设AB、BC的垂直平分线相交于点P,连接AP、BP、CP,
∵点P在线段AB的垂直平分线上
∴PA=PB(线段垂直平分线上的点到这条线段两个端点
距离相等)
同理:PB=PC
∴PA=PC
∴点P在AC的垂直平分线上
(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)。
∴AB,BC,AC的垂直平分线相交于点P。
议一议:1、已知三角形的一条边及这条边上 的高,你能作出三角形吗?如果能,能
作几个?所作的三角形都全等吗?(这样的三角形能作出无数多个 ,它们不都全等)
2、已知等腰三角形底边及底边上的高,你能用尺规作出等腰三角形吗?能作几个?
(满足条件的等腰三角形可和出两个,分加位于已知边的两侧,它们全等)。

做一做:
已知底边上的高,求作等腰三角形。
已知:线段a、b


求作:△ABC,使AB=AC,且BC=a,高AD=h.

作法:
(1)作线段BC=a(如图); (2)作线段BC的垂直平分线L,交BC于点D,
(3)在L上作线段DA,使DA=h (4)连接AB,AC 作业: 6.教学后记:
三. 随堂练习
课本p31 习题1.7 1.
四. 小结
这节课主要学习证明了三角形的三条边的垂 直平分线为什么交于一点,已知底
边和底边的高求作等腰三角形的方法。
五. 作业
1) 等边三角形是 图形,它的对称轴是 。
2) 点P为△ABC内一点,且PA=PB=PC,则点P是 。
3) 等腰三角形的对称轴有( )条
A. 1 B. 2 C. 3 D.1至3
4) 等边三角形边长为2a,则高为( )
A. 3 a B. a C.2 a D.2a
5) 画一个不等边三角形ABC, 再画出到所画三角形的AB、AC边所在直线距离相等,到点B、 C的距离相等
的点,要求画出图形并写作法。
6) 如图,已知AD是∠BAC的平分线,AD的垂直平分线EF与CB的延长线交于F,求证∠C=∠BAF.
六. 教后反思






4.角平分线
 教学目标:
1. 进一步发展学生的推理证明意识和能力;
2. 能够证明角平分线的性质定理、判定定理及相关结论
3. 能够利用尺规作已知角的平分线。
 教学过程:
一. 引入
二. 新课讲授
1. 定理:角平分线上的点到这个角两边的距离相等。
证明:如图OC是∠AOB的平分线,点P在OC上
PD⊥OA,PE⊥OB,垂足分别为D、E,
∵∠1=∠2,OP=OP,
∠PDO=∠PEO=90°
∴△PDO≌△PEO(AAS)


∴PD=PE(全等三角形的对应边相等)
其逆命题也是真命题。引导学生自己证明。
定理:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。

2. 做一做:用尺规作角的平分线。
已知:∠AOB
求作:射线OC,使∠AOC=∠BOC
作法:
1、在OA和OB上分别截取OD、OE,使OD=OE
1
2、分别以D、E为圆心,以大于
2
DE的长为半径作弧,两弧在∠AOB内交于点C。
3、作射线OC
OC就是∠AOB的平分线。
读一读:了解尺规作图不能问题。
三. 随堂练习:
课本P34 1. 2.
四. 小结
这节课主要学习了如何证明角平分线的性质定理,角平分线的画法。
五. 作业:
课本P36, 2. 3.
六. 教后反思



回顾与思考

 教学内容
(课本P41“回顾与思考”)

 教学目的
1. 经历回顾与反思的过程,深刻理解和掌握定理的探索和证明。
2. 结合具体实例感悟证明的思路和方法,能运用综合分析的方法解决有关问题。
3. 正确运用尺规作图的基本方法作已知线段的垂直平分线和角平分线,以及绘制特
殊三角形。
4. 培养学生识别两不互逆命题的基本内含,以及体会反证法的含义。
5. 培养学生的数学应用意识,合作交流能力,形成良好的分析思想。

 重点难点
重点:通过探索、发现、猜想,掌握证明的基本方法和思路。
难点:深刻理会和掌握证明的思路和方法。

 教学过程


一. 问题引入
请同学们分四人小组交流自己的单元小结,并且构建出本单元 知识联系图,探索知
识之间的发展脉络与内在联系。
二. 知识点小结



三. 问题思考:
1. 说说作为证明基础的几条公理。
2. 向你同桌讲述一两个命题的证明思路和证明方法。
3. 你能说出一对互逆命题吗?它们的真假性如何?
4. 任意画一个角,利用尺规将其二等分、四等分。
四. 课堂练习:
课本P41,1、2题
五. 作业:
课本P42 6 12
六. 教后反思

计算机个人简历封面-情人节祝福语


歌曲桃花红杏花白-可行性研究报告范本


纪念钞最新价格-小学生环保手抄报


wifi密码忘了怎么办-企业贷款申请书


jealous怎么读-错误的爱情


形容能言善辩的成语-年会策划方案


比较狂的网名-一致的近义词


歌声嘹亮-微笑面对生活的事例