高考数学,空间几何体的结构特征、三视图和直观图题型归纳
炖羊肉的家常做法-怎么说
贾老师数学
第八章 立体几何
第一节
空间几何体的结构特征、三视图和直观图
❖ 基础知识
1.简单的几何体
(1)多面体的结构特征
名称 棱柱 棱锥 棱台
图形
底面
侧棱
侧面形状
①特殊的四棱柱
四棱柱――――→
平行四边形
底面为
多边形
相交于一点,但不一定相等
三角形
互相平行且相似
延长线交于一点
梯形
互相平行且相等
互相平行且相等
平行四边形
平行侧棱垂直
直平行
底面为底面侧棱与底面
――――→――→长方体――――→正四棱
柱――――→正方体
边长相等边长相等
六面体
于底面
六面体
矩形<
br>上述四棱柱有以下集合关系:{正方体}{正四棱柱}{长方体}{直平行六面体}{平行六面
体
}{四棱柱}.
②多面体的关系:棱柱
(2)旋转体的结构特征
名称 圆柱 圆锥
圆台 球
一个底面退化
――→
为一个点
棱锥
平行于底面的
平面截得
――→棱台
贾老师数学
图形
母线
轴截面
侧面展
开图
互相平行且相等,垂直于底面
全等的矩形
矩形
长度相等且相交于一点
全等的等腰三角形
扇形
▲球的截面的性质
(1)球的任何截面是圆面;
(2)球心和截面(不过球心)圆心的连线垂直于截面; (3)球心到截面的距离d与球的半径R及截面的半径r的关系为r=R
2
-d
2
.
2.直观图
(1)画法:常用斜二测画法.
(2)规则:
①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x
′
轴和y′轴所在平面垂直.
②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平
行于x轴和z轴的线段在直观图中
保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.
3.三视图
几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方
和正上方观察几
何体画出的轮廓线.
延长线交于一点
全等的等腰梯形
扇环
圆
❖ 常用结论
1.常见旋转体的三视图
(1)球的三视图都是半径相等的圆.
(2)底面与水平面平行放置的圆锥的正视图和侧视图为全等的等腰三角形.
(3)底面与水平面平行放置的圆台的正视图和侧视图为全等的等腰梯形.
(4)底面与水平面平行放置的圆柱的正视图和侧视图为全等的矩形.
2.斜二测画法中的“三变”与“三不变”
贾老师数学
坐标轴的夹
角改变,
“三变”
与y轴平行的线段的长度变为原来的一半,
图形改变.
平行性不改变,
“三不变”<
br>
与x轴和z轴平行的线段的长度不改变,
相对位置不改变.
考点一 空间几何体的结构特征
[典例]
下列结论正确的是( )
A.侧面都是等腰三角形的三棱锥是正三棱锥
B.六条棱长均相等的四面体是正四面体
C.有两个侧面是矩形的棱柱是直棱柱
D.用一个平面去截圆锥,底面与截面之间的部分叫圆台
[解析] 底面是等边三角形,且各
侧面三角形全等,这样的三棱锥才是正三棱锥,所以A错;斜四棱柱
也有可能两个侧面是矩形,所以C错
;截面平行于底面时,底面与截面之间的部分才叫圆台,所以D
错.
[答案] B
[题组训练]
1.下列结论中错误的是( )
A.由五个面围成的多面体只能是三棱柱
B.正棱台的对角面一定是等腰梯形
C.圆柱侧面上的直线段都是圆柱的母线
D.各个面都是正方形的四棱柱一定是正方体
解析:选A 由五个面围成的多面体也可以是四棱锥,所以A选项错误.B、C、D说法均正确.
2.下列命题正确的是( )
A.两个面平行,其余各面都是梯形的多面体是棱台
B.两个面平行且相似,其余各面都是梯形的多面体是棱台
C.直角梯形以一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台
D.用平面截圆柱得到的截面只能是圆和矩形
解析:选C 如图所示,可排除A、B选项.只
要有截面与圆柱的母线平行或垂直,截得的截面才为矩
形或圆,否则为椭圆或椭圆的一部分.
贾老师数学
考点二 空间几何体的直观图
[典例] 已知
等腰梯形ABCD,CD=1,AD=CB=2,AB=3,以AB
为x轴,则由斜二测画法画出的直观
图A′B′C′D′的面积为________.
[解析] 法一:如图,取AB的中点O为坐标原点
,建立平面直角坐标系,y轴交DC于点E,O,E在
所在直线
斜二测画法中的对应点为O′,
E′,过E′作E′F′⊥x′轴,垂足为F′,
因为OE=2
2
-1
2
=1,
所以O′E′=
1
2
,E′F′=
2
4
.
所以直观图A′B′C′D′的面积为
S′=
12
2
×(1+3)
×
2
4
=
2
.
法二:由题中数据得等腰梯形ABCD的面
积S=
1
2
×(1+3)×1=2.
由S
直观图
=
2
4
S
22
原图形
的关系,得S
直观图
=
4
×2=
2
.
[答案]
2
2
[题组训练]
1.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是(
)
贾老师数学
解析:选A 由直观图可知
,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,
位于y轴上的对角线长为22
.故选A.
2.已知正三角形ABC的边长为2,那么△ABC的直观图△A′B′C′的面积为__
______.
解析:如图,图①、图②分别表示△ABC的实际图形和直观图.
从图②可知,A′B′=AB=2,
13326
O′C′=OC=,C′D′=O′C′sin 45°=×=.
222
24
1166
所以S
△
A
′
B
′
C
′
=A′B′·C′D′=×2×=.
2244
答案:
6
4
考点三 空间几何体的三视图
考法(一) 由几何体识别三视图
贾老师数学
[典例]
(2019·长沙模拟)如图是一个正方体,A,B,C为三个顶点,D是棱的中点,则三棱锥A-
BCD
的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )
[解析] 正视图和俯视图中棱AD和BD均看不见,故为虚线,易知选A.
[答案] A
考法(二) 由三视图判断几何体特征
[典例] (1)(2018
·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图
示.圆柱表面上的点M在正视图上的对应点为
A,圆柱表面上的点N
图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路
度为
( )
A.217
C.3
B.25
D.2
如图所
在左视
径的长
(2)(2019·武汉调研)已知某四棱锥的三视图如
图所示,则该四棱锥的四个侧面中最小的面积为________.
贾老师数学
[解析] (1)先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图①所示.
圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图②所示,连接MN,则图中M
N即为
1
M到N的最短路径.ON=×16=4,OM=2,
4
∴MN=OM
2
+ON
2
=
2
2
+4
2
=25.
(2)由三视图知,该几何体是在长、宽、高
分别为2,1,1的长方体中,截去一个三棱柱AA
1
D
1
-BB
1
C
1
和一个三棱锥C-
BC
1
D后剩下的几何体,即如图所示的四棱锥D-ABC
1
D
1<
br>,其中侧面ADD
1
的面积最小,
1
其值为.
2
[答案] (1)B (2)
1
2
考法(三) 由三视图中的部分视图确定剩余视图
[典例]
(2018·唐山五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为(
贾老师数学
)
贾老师数学
[解析] 由正
视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视
图的直径可知侧
视图应为A,故选A.
[答案] A
[题组训练]
1.如图1所示,
是一个棱长为2的正方体被削去一个角后所得到的几何体,其中DD
1
=1,AB=BC=AA
1
=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是( )
贾老师数学
解析:选C 根据该几何体的直观图和俯视
图知,其正视图的长应为底面正方形的对角线长,宽应为正
方体的棱长,故排除B、D;而在三视图中看
不见的棱用虚线表示,故排除A.故选C.
2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,
其中正视图和侧视图都由正方形和
等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.
该多面体的
各个面中有若干个是梯形,这些梯形的面积之和为( )
A.10
C.14
B.12
D.16
解析:选B 由三视图可知该多面体是
一个组合体,下面是一个底面是等腰直角三
角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥
,等腰直角三角形的腰长为2,直三棱柱
2+4×2
的高为2,三棱锥的高为2,易知该多
面体有2个面是梯形,这些梯形的面积之和为×2=12,
2
[课时跟踪检测]
1.对于用“斜二测画法”画平面图形的直观图,下列说法正确的是( )
A.等腰三角形的直观图仍为等腰三角形
B.梯形的直观图可能不是梯形
C.正方形的直观图为平行四边形
D.正三角形的直观图一定为等腰三角形
解析:选C 根据“斜二测画法”的定义可得正方形的直观图为平行四边形.
2.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )
A.球
C.正方体
B.三棱锥
D.圆柱
解析:选D 球、正方体的三视图
的形状都相同,大小都相等,首先排除选项A和C.对于三棱锥,考
贾老师数学
虑特殊情况,如三棱锥C-OAB,当三条棱OA,OB,OC两两垂直,且OA=OB=OC时,正视
图方向
为AO方向,其三视图的形状都相同,大小都相等,故排除选项B.选项D,不论圆柱如何放置,
其三视
图的形状都不可能完全相同.
3.(2019·福州模拟)一水平放置的平
面图形,用斜二测画法画出它的直观图如图所
示,此直观图恰好是一个边长为2的正方形,则原平面图形
的面积为( )
A.23
C.43
B.22
D.82
解析:选D 由斜二测画法可知,原平面图形是一个平行四边形,且平行四边形的一组对边长为2,在<
br>斜二测画法画出的直观图中,∠B′O′A′=45°且O′B′=22,那么在原图形中,∠BOA=9
0°且
OB=42.因此,原平面图形的面积为2×42=82,故选D.
4.给出下列几个命题:
①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的
母线;②底面为正多边形,且有相
邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相
似,但侧棱长一定相等.其中正
确命题的个数是( )
A.0
C.2
B.1
D.3
解析:选B ①错误,只有这两点的连线平行于轴时才是母线;②正
确;③错误,棱台的上、下底面是
相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一
定相等.
5.若某几何体的三视图如图所示,则这个几何体的直观图可以是(
)
贾老师数学
解析:选D
由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D.
6.用若
干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小
正方体的块
数是( )
A.8
C.6
B.7
D.5
解析:选C 画出直观图可知,共需要6块.
贾老师数学
7.(2018·南宁二中、柳州高中联考)如图,网格纸上小正方形的边长为1,粗线画出
的是某几何体的正
8
视图和侧视图,且该几何体的体积为,则该几何体的俯视图可以是( )
3
贾老师数学
解析:选C
若俯视图为选项C中的图形,则该几何体为正方体截去一部分后的四棱锥P-ABCD,如图
18
所示,该四棱锥的体积V=×(2×2)×2=,符合题意.若俯视图为其他选项中的图形,则根据三视图33
易判断对应的几何体不存在,故选C.
8.如图,在底面边长
为1,高为2的正四棱柱ABCD-A
1
B
1
C
1
D
1
(底面ABCD是正方形,侧
棱AA
1
⊥底面ABCD)中,点P是正方
形A
1
B
1
C
1
D
1
内一点,则三棱锥P
-BCD的正视图与
俯视图的面积之和的最小值为( )
3
A.
2
C.2
B.1
5
D.
4
1
解析:选A 由题图易知,三棱锥P-BCD的正视图面积为×1×2=1.当顶
点P的投影在△BCD内部或
2
11
其边上时,俯视图的面积最小,为S
△<
br>BCD
=×1×1=.所以三棱锥P-
BCD的正视图与俯视图的面积之
22
13
和的最小值为1+=.故选A.
22
9.设有以下四个命题:
①底面是平行四边形的四棱柱是平行六面体;
②底面是矩形的平行六面体是长方体;
③直四棱柱是直平行六面体;
④棱台的相对侧棱延长后必交于一点.
其中真命题的序号是________.
解析:命题①符合平行六面体的定义,故命题①是正
确的;底面是矩形的平行六面体的侧棱可能与底面
贾老师数学
不垂直,故命题
②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由
棱台的定义知是正
确的.
答案:①④
10.一个圆台上、下底面的半径分别为3 cm和8
cm,若两底面圆心的连线长为12 cm,则这个圆台的
母线长为________cm.
解析:如图,过点A作AC⊥OB,交OB于点C.
在Rt△ABC中,AC=12(cm),BC=8-3=5 (cm).
∴AB=12
2
+5
2
=13(cm).
答案:13
11.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方
形,在该几何体上任意
选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三
个面为直角三角形,
有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.
其中正确命题的序号是________.
解析:由三视图可知,该几何体是正四
棱柱,作出其直观图为如图所示的四棱柱ABCD-A
1
B
1
C
1<
br>D
1
,当
选择的4个点是B
1
,B,C,C
1
时,可知①正确;当选择的4个点是B,A,B
1
,C时,可知②正确;易
知③不正
确.
答案:①②
12.如图,三棱锥A-BCD中,AB⊥平面BCD,BC⊥
CD,若AB=BC=CD=2,则该三棱锥的侧视图(投
影线平行于BD)的面积为________
.
解析:因为AB⊥平面BCD,投影线平行于BD,
贾老师数学
所以三棱锥A-BCD的侧视图是一个以△BCD的BD边上的高为底,棱锥的高为高的三角形,
因为BC⊥CD,AB=BC=CD=2,
所以△BCD中BD边上的高为2,
1
故该三棱锥的侧视图的面积S=×2×2=2.
2
答案:2