分数乘法和分数裂项法
大城小事杨千嬅-日志文章
分数乘法与分数裂项法
【专题解读】
我们知道,分
数乘法的运算是这样的:分数乘分数,应该分子乘分子,分母乘分母(当然能约分的最好先约
分在计算)
。
分数乘法中有许多十分有趣的现象与技巧,它主要通过些运算定律、性质和一些技巧性的方法,达到
计算正
确而迅速的目的。
1、运用运算定律:这里主要指乘法分配律的应用。对于乘法算式中
有因数可以凑整时,一定要仔细分析另一
个因数的特点,尽量进行变换拆分,从而使用乘法分配律进行简
便计算。
2、充分约分:除了把公因数约简外,对于分子、分母中含有的公因式,也可直接约简为1。
进行分数的乘法运算时,要认真审题,仔细观察运算符号和数字特点,合理进行简算。需要注意的是参加
运
算的数必须变形而不变质,当变成符合运算定律的形式时,才能使计算既对又快。
【典型例题】——乘法分配律的妙用
4467
例1.计算:
(1)×37
(2)2004×
452003
4444
分析与解:观察这两道题的数字特
点,第(1)题中的与1只相差1个分数单位,如果把写成(1-
4545
44
)的差
与37相乘,再运用乘法分配律可以使计算简便。同样,第(2)题中可以把整数2004写成(2003+1)
45
67
的和与相乘,再运用乘法分配律计算比较简便。
2003
【举一反三】
435656
×37 (2)×37
(3)×56
445757
171
41
例2.计算:
(1)72×
(2)73×
17
24
15
8
44
分析与解:(1)72把改写成(72
+),再运用乘法分配律计算比常规方法计算要简便得多。(2)
1717
116
73
把改写成(72 +),再运用乘法分配律计算比常规方法计算要简便得多。
1515
计算:
(1)
【举一反三】
4311
76131
计算:
(1)20× (2)16×
(3)
57
× (4)64×
7
10
138
133217
9
【小试牛刀】
2813
计算:
(1)×37 (2)×28
2929
【典型例题】——乘法交换律的巧用
537541326
53
例3.
计算:
(1)×+×+× (2)×39 +×25 +×
27827
12
2427444
13
5
,就可以应
27
1326326
3
用乘法分配律使计算简便。 (2)观察题目的特点,×39可以写成×13,×可以写
成×,这
444413
13
3
样每个因数中都含有,就可以运用乘法分配律使
计算简便。
4
【举一反三】
4155
191456
计算:
(1)×+×
(2)×+×+×
13
7
13
7
17
69
171
817
分析与解:(1)观察题目的特点,分子中都有5,分母中都有27,根据乘法的交换律,凑出<
br>
(3)
1351
×39 +×27 (4)×17
+×25
441111
【典型例题】——有关小数、带分数的分数乘法的巧算
145
例4.
计算:
41×0.75 +51.25×+×61.2
356
分析与解:先把
题中的小数化成分数,再观察题目的特点,41
143
写成(40+)后可以与应用乘法分配律
334
直接就算出了结果,后两个算式同样可以应用这个方法,从而使计算简便。
【举一反三】
458116
计算:
(1)21.25×+31.2×+46.125×
(2)85×0.375+71×+56.25×0.8
569367
一、 分数裂项求和
【专题解读】
细心观察、善于总结的同学,在学习中可能发现了这样一个有趣的现象:如果分
数的分子是自然数1,分母是
相邻两个自然数的乘积,那么这个分数可以写成两个分数差的形式。写成的
两个分数的分子是自然数1,分母分别
是相邻的两个自然数。(这种方法称为
“裂项法”
)
如:
1111111111
1
1
=—;=—;=—;=—;…… <
br>12
1
2232334344545
我们可以利用分数的这一性质,使
看似复杂的题目简单化。
【典型例题】
例1.计算:
11111
+++…++
122334484949
50
分析与解:这道题如果按照常规方法先通分再求和,计算起来很繁杂,甚至难以做到。但是如果巧
妙地对
算式变形,就可以使繁杂的计算简便。
【举一反三】
计算:
(1)
(2)
11111
+++…++
12233418191920
111
11
+++…++
111212131314
2008200920092010
例2.计算:
1
1
11
+++…+
6
12
202450
分析与解:上面这道题中的每个分数的分子都是1,但分母并不是两个相邻自然数的乘积
,该怎么办
呢?仔细观察这些分数的分母就会发现:6=2×3 , 12=3×4 , 20=4×5
,
…,2450=49×50。这样,上
面算式中分数的分母也可以写成相邻两个自然数乘积的
形式。
【举一反三】
11
1
11111
11
计算:
(3)
++++…+
(4)
+++…++
26
12
2020
30
42132156
90
4
444
例3.
计算:+++…+
15
59
91320012005
分析
与解:这道题中每一个分数的分母都可以写成不相邻的两个自然数乘积的形式,分子是这两个自然数的
差
。这样每一个分数也都可以写成两个分数差的形式,写成的两个分数的分子是自然数1,分母分别是原分数中分<
br>母上的两个自然数。如:
411
41
1
=
—;
=
—等等。
59
151
559
【举一反三】
计算:
(5)
555
5
+++…+
97102
27
7121217
(6)
3333
+++…+
25588113235
例4. 计算:
1
111
+++…+
15
59
91320012005
分析与解:是不是觉得本题和例3有些相
似,但又不完全一样?例3中每一个分数的分子都是4(两个自然数
的差),而这道题中每一个分数的分
子都是1,可以直接将每一个分数写成两个分数相减的形式吗?该怎么计算
呢?
这就启发我们
思考,能否将每一个分数的分子也变成两个自然数的差呢?利用分数的基本性质是完全可以
的。所以给原
题乘4,为了使原题的值不变,然后再除以4.
【举一反三】
计算:
111111
11
(7)
+++…+
(8)
+++…+ <
br>971024045
27
7121217
510
101
51520
例5.
计算:
11
11
+++…+
12123
12
34123450
分析与解:先算出每一个分数中的分母,再仔细观察每一个分数,找出
规律然后计算。
【举一反三】
计算:
(9)
11
11
+++…+
12123
1234123420
(10)
11
11
+++…+
12123
12341234100
课后作业
1、计算
75×
47231717
3
1
157×21×21×
76156
17
42
17
20
1
1
11
111
+++
…+
......
5960
3
35
357
35721
10111112
11111111
6122