概率加法公式
玩游戏的电脑-最后的讨伐
《概率的加法公式》教学设计
新授课之前的准备工作:(1)将
全班学生分成若干组,每组8人,原则是自愿组合,老师适当调整,使
每个小组尽可能具备讨论问题的氛
围基础。(2)精选出9个合适的题目制成思考题单,课前发到各个小组,
各小组就自己感兴趣的问题分
析思考,以奠定上课时各组之间研究问题的基础。(3)做好相应的多媒体演
示课件,根据教学情况之需
适时演示。
师:1个盒内放有10个大小相同的乒乓球,其中5个红球,3个绿球,2个黄球,若从中
任取一个球,
得到红球记为“事件A”,从中任取一个球,得到绿球记为“事件B”,从中任取一个球,
得到黄球记为“事
件C”,则事件A、B、C之间存在什么关系?
(学生暂时还不能解决这个问题。)
师:请同学们首先思考这样一个问题:如果从盒中摸出一个球是红球,则说明事件A怎样?
生:事件A发生。
师:很好,那么如果从盒中摸出一个球是绿球,即事件B发生,则说明事件A又怎样?
生:事件A没有发生。
师:通过对以上两个问题的探究,你发现事件A和事件B具有怎样的关系?(让学生思考)
生甲:事件A和事件B不能同时发生。
师:事件A和事件B就叫互斥事件,请同学们给互斥事件下个定义。
生乙:在一次试验中事件A和事件B不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件。
师:很好,那么事件B与事件C是怎样的关系?事件A与事件C又是怎样的关系?
生:两个都是互斥事件。
师:如果事件A、B、C其中任何两个都是互斥事件(两两互斥),
就说A、B、C彼此互斥,那么四个
及四个以上的事件是否也能存在这种关系呢?若能请你把它推广到n
个。
生丙:能,就以上题为例,把盒中的球的颜色增加到若干种即可,有几种颜色就能有几个互斥事件。 <
br>师:很好,我们再来思考另一个问题,请同学们联想集合的知识,思考能否用集合的知识来解释互斥
事件的概念?
生丁:从集合角度看两个互斥事件是指由两个事件所含基本事件组成的集合不相交。
师:若n个事件彼此互斥呢?
生戊:n个事件彼此互斥是指n个事件所含的基本事件组成的集合彼此都不相交。
师:请同学们看屏幕,用维恩图图(2)、图(3)来深刻理解互斥事件。
有什么特殊关系呢?
师:从集合角度看,若图(4)中的全集U中仅有两个集合,
两集合是什么关系?其对应的事件A、B又
生:集合A、B不相交,集合A、B的并集是全集,事件A、B互斥。
师:对,例如在上面问
题中,若把“如果从盒中摸出1个球,得到红球记为“事件A”;得到的不是红
球(即绿球或黄球)记为
“事件B”,事件A与B是否能同时发生?
生:不能。
师:事件A与B是互斥事件吗?
生:是
师:事件A与B必有一个发生吗?
生:必有一个发生。
师:这时
事件A与B互为对立事件,请同学们给对立事件下个定义。(学生通过的小组讨论与概括,
自然得到结论
与定义,让学生表述定义。)
生戊:集合A、B互为补集,从事件的角度看,若事件A与B互斥,且A
与B中必有一个发生,则称事
件A与B是对立事件。
生甲:不能同时发生且必有一个发生的两个事件叫做互为对立事件。
师:两个同学回答得都很好,甲回答得更简炼,请同学们思考互斥事件与对立事件存在怎样的联系?
生:对立事件一定互斥事件,互斥事件不一定是对立事件。
做练习:若从一幅去掉大小王的扑
克牌中,任取一张,判断下列每对事件中哪些是互斥事件,若是请
判断各事件是否为对立事件。
A、“抽出红桃”与“抽出黑桃A”;
B、“抽出牌的点数是3的倍数”与“抽出牌的点数为2的倍数”;
C、“抽出牌的点数为3的倍数”与“抽出牌的点数为5的倍数”;
D、“抽出牌的点数小于6”与“抽出牌的点数大于4”;
E、“抽出是红桃”与“抽出不是红桃”。
(学生思考)
学生甲:A、C、E为互斥事件,其中E为对立事件,B、D不是互斥事件。
师:通过以上问
题的解决,你能否根据你们手中的扑克牌,以小组为单位提出一个有关互斥事件或对
立事件的问题吗?请
试试看。
(通过学生独立思考与讨论,由每小组各提出一个问题大家来讨论评判)
甲组学生
代表:从一副去掉大小王的扑克牌中(52张)任取2张。“抽出的至少一张牌为红桃”和“抽
<
br>出的两张牌没有红桃”。
生:既是互斥事件也是对立事件。
师:下面我们回归到最初
的问题情景中,请同学们思考以下问题。1个盒内放有10个大小相同的乒乓
球,其中5个红球,3个绿
球,2个黄球,若从中任取一个球,求(1)取到红球的概率;(2)取到绿球的
概率?
生甲:取到红球概率12;
取到绿球概率310;
师:很好,若把“从中摸出一个
球,得到红球或绿球记作事件AUB,则怎样的事件表示该事件发生?怎
样求该事件的概率?它与事件A
与B的概率存在怎样的关系?”
生乙:从盒中摸出一个球是红球或绿球时,“表示事件AUB发生”,
事件AUB的概率等于事件A与事
件B的概率之和。
师:哪位同学能说明P(AUB)=P(A)+P(B)成立的理由 ?
生丙:假定A、B是
互斥事件,在n次试验中,事件A出现的频数是n
1
,事件B出现的频数是n
2
,则事
件AUB出现的频数正好是n
1
+n
2
,所以事件AUB的
频率为(n
1
+n
2
)n=n
1
n+n
2
n。
而n
1
n是事件A出现的频率,n
2
n是事件B出现的频率,
因此由概率的统计定义知P(AUB)=P(A)
+P(B)。
(学生回答,老师总结、板书。)
师:例1、抛掷一颗骰子,观察掷出的点数,设事件A “
出现为“出现奇数点”,B为2点”,已知P
(A)=12,P(B)=16,求“出现奇数点或2点”
的概率。
生甲:事件C:“出现奇数点或2点”的概率是事件A“出现奇数点”的概率与事件B“出现
2点”的
概率之和。即P(C)=P(A)+P(B)=12+16=23。(学生回答,教师板书)
师:例2、在数学考试中,小明的成绩在90分以上的概率是0.18,在80~89分的概率是0.5
1,在70~79
分的概率是0.15,在60~69分的概率是0.09,分别计算小明在数学考试中
取得80分以上成绩的概率和小明
考试及格的概率。
生:解:分别记小明的考试成绩在90分
以上,在80~89分分别为事件B、C,这两个事件彼此互斥,因
此小明的考试成绩在80分以上的概
率是P(BUC)=P(B)+P(C)=0.18+0.51=0.69。(学生回答,老师板书)
师:请同学们仔细观察例2,计算小明考试及格的概率。(学生思考)
生:接着第一个问题,
再设小明考试成绩在70~79分,60~69分为事件D、E,所以小明考试及格的概
率,即成绩在6
0分以上的概率为P(BUCUDUE)=P(B)+P(C)+P(D)+P(E)=0.18+0.51+0
.15+0.09=0.93。
师:若事件A
1
、A
2
„„An
两两互斥(彼此互斥),那么事件“A
1
UA
2
U„„An
”发生的概率如何表示?
生:P(A
1
UA
2
U„
„UA
n
)=P(A
1
)+P(A
2
)+„„+
P(A
n
)
师:这就是互斥事件的概率加法公式。若A与B是对立事件,根据对立事
件的意义,你能得AUB的概
率吗?
生:P(AUB)=P(A)+P(B)=1
师:为什么?
生:AUB是必然事件。
师:很好,例2中的问题改为求小明考试不
及格的概率,设考试不及格为“事件A”,及格为事件“B”。
(让学生观察,计算,希望学生通过观察发现对立事件概率的计算公式。)
生:小明考试不及格的概率P(A)=1-P(B)=0.07
师:哪位同学总结一下,本题给我们提出了哪些解题方法与数学思想?
生甲:所求事件概率转化为彼此互斥事件的概率的和。
生乙:若求一个事件的概率,可转化为求其对立事件的概率,体现“正难则反”的转化思想。
师:哪位同学能归纳出求解方法和步骤,以及应当注意的问题?(师生共同讨论)
生丙:解题步骤可归纳为4步:
(1)引用数学符号表示问题中的有关事件;
(2)判断各事件的互斥性;
(3)应用概率的加法公式进行计算;
(4)写出答案。
如果A、B两个事件不互斥,就不能运用互斥事件的概率加法公式。若A、
B为互斥事件,才能运用概
率的加法公式。
练习:在同一时期内,一条河流某处的年最高水平在各个范围内的概率如下:
年最高水位
低于10m
概率
0.1
10~12m
0.28
12~14m
0.38
14~16m
不低于16m
0.16
0.08
计算在同一时期内,河流这一处的年最高水位在下列范围内的概率。
(1)10~16m;(2)低于12m;(3)不低于14m;
生:(1)0.92
(2)0.38 (3)0.24
师:让我们回顾一下这节课
(1)从本节课的学习中你有何收获?
(2)如何得出有关概念、规律和公式?
生甲:„„
生乙:„„
(学生先总结,老师补充得到)
转化思想,特殊到一般的推理方法。
师:我们这节课从具体实例出发,通过观察,探索,讨论
得出了互斥事件的概念和对立事件的概念,
大胆猜测了互斥事件的概率求和公式,并给出证明,而且用这
些公式解决一些实际问题,整个过程采用了由
特殊到一般的推理方法,这也是我们探索自然规律,认识发
现自然规律,应用自然规律常用的方法,希望同
学们以后在学习中努力多探索多发现,想信在未来的世界
领奖舞台上,会出现在座的各位,谢谢。
一、教学内容的特点及处理
概率是研究随机现象规
律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的办法,
同时为统计学的发展提供了
理论基础,本节课内容具有重要的地位,体现数学来源于生活服务于生活的本质。
对于本节课教材中的概
念和公式也都是从生活的实例中探究、归纳,猜想、证明得出的。
二、教学目标的确定
数学
教学中应该以知识为依托,以思想方法为核心,以提高学生的能力素质为目的,根据本节课教材
的特点和
新课标对本节课的教学要求从知识与技能,过程与方法,情感态度与价值观三方面确定了相应的教
学目标
,不仅要求学生在老师引导下主动探索过程中对用到的数学思想方法和思维方法有一定的领悟和认
识,还
达到培养能力的目的。
三、教学方法的选择
在本节课教学中,我设计了大量
的实际问题,让学生理论和实际相联系,与此同时,我还在教学中让
学生分组讨论,参与到教学中,在整
个教学中我还注意通过创设情景,引导学生,培养他们独立思考的能力,
允许学生争论,为课堂教学营造
了民主,热烈的学术氛围。