高中数学:第二章 2.3 第1课时 等差数列的前n项和公式
小平您好-英雄歌词
ruize
[课时作业]页
[A组 基础巩固]
1.等差数列{
a
n
}中,d=2,a
n
=11,S
n
=35,则a
1
等于( )
A.5或7
C.7或-1
B.3或5
D.3或-1
a
n
=11,<
br>
解析:由题意,得
即
nn-1
S
n
=35,
na+×2=35.
1
a
1
+2n-1=11,
2
n=5,
n=7,
解得或
a
1
=3,
a
1
=-1
.
★答案★:D
2.已知等差数列{a
n
}的前n项和为S<
br>n
,若S
2
=4,S
4
=20,则该数列的公差d为( )
A.7
C.3
B.6
D.2
解析:由S
2=4,S
4
=20,得2a
1
+d=4,4a
1
+6d
=20,解得d=3.
★答案★:C
3.已知等差数列{a
n
}满足a<
br>2
+a
4
=4,a
3
+a
5
=10,则它的
前10项的和S
10
等于( )
A.138
C.95
B.135
D.23
10×9
解析:由a
2
+a
4
=4,a
3
+a
5
=10,可知d=3,a
1
=-4.∴S
10
=-40+×3=95.
2
★答案★:C
4.
若等差数列{a
n
}的前5项和S
5
=25,且a
2
=3,
则a
7
等于( )
A.12
C.14
解析:由S
5
=5a
3
=25,∴a
3
=5.
∴d=a
3
-a
2
=5-3=2.
∴a
7
=a
2
+5d=3+10=13.
★答案★:B
5.已知数列{a
n
}的前n项和S
n
=n
2
-9
n,第k项满足5<a
k
<8,则k等于( )
A.9
C.7
解析:当n=1时,a
1
=S
1
=-8;
当n≥2时,a
n
=S
n
-S
n
-
1
=(n
2<
br>-9n)-[(n-1)
2
-9(n-1)]=2n-10.
B.8
D.6
B.13
D.15
ruize
综上可得数列{a
n
}的通项公式a
n
=2n-10.
所以a
k
=2k-10.令5<2k-10<8,解得k=8.
★答案★:B
1
6.已知数列{a
n
}中,a
1
=1,a
n
=a
n
-
1
+(n≥2),则数列{a
n
}的前9项和等于________.
2
11
解析:∵n≥2时,an
=a
n
-
1
+,且a
1
=1,所以数列{a
n
}是以1为首项,以为公差的等差
22
9×8
1
数列,所
以S
9
=9×1+×=9+18=27.
22
★答案★:27
7
.等差数列{a
n
}中,若a
10
=10,a
19
=100
,前n项和S
n
=0,则n=________.
a
1
+9d=10
解析:
,∴d=10,a
1
=-80.
a
1
+18d=100
nn-1
∴S
n
=-80n+×10=0,
2
∴-80n+5n(n-1)=0,n=17.
★答案★:17
8.等
差数列{a
n
}中,a
2
+a
7
+a
12
=24,则S
13
=________.
解析:因为a
1
+a13
=a
2
+a
12
=2a
7
,
又a
2
+a
7
+a
12
=24,
所以a
7
=8.
13a
1
+a
13
所以S
13
==13×8=104.
2
★答案★:104
9.在等差数列{a
n
}中:
(1)已知a
5
+a
10
=58,a
4
+a
9
=50,求S
10
;
(2)已知S
7
=42,S
n
=510,a
n
-<
br>3
=45,求n.
解析:(1)由已知条件得
a
5+a
10
=2a
1
+13d=58,
a
1<
br>=3,
解得
a+a=2a+
11d=50,d=4.
4
91
10×10-1
10×9
∴S
10
=10a
1
+d=10×3+×4=210.
22
7a
1
+a
7
(2)S
7
==7a
4
=42,
2
∴a
4
=6.
na
1
+a
n
na
4
+a
n
-
3
n6+45
∴S
n
====510.
222
ruize
∴n=20.
10.在等差数列{a<
br>n
}中,a
10
=18,前5项的和S
5
=-15,
(1)求数列{a
n
}的通项公式;
(2)求数列{a
n
}的前n项和的最小值,并指出何时取得最小值.
解析:(1)设{a
n
}的首项,公差分别为a
1
,d.
a+9d=18,
1
则
5
5a+×4×d=-15,
1
2
解得a
1
=
-9,d=3,
∴a
n
=3n-12.
na
1
+a<
br>n
1
2
(2)S
n
==(3n-21n)
22
7
3147
n-
2
-, =
2
2
8
∴当n=3或4时,前n项的和取得最小值为-18
.
[B组 能力提升]
1.S
n
是等差数列{a
n
}的
前n项和,a
3
+a
6
+a
12
为一个常数,则下列也是常
数的是( )
A.S
17
C.S
13
B.S
15
D.S
7
解析:∵a<
br>3
+a
6
+a
12
为常数,∴a
2
+a7
+a
12
=3a
7
为常数,∴a
7
为常数.
又S
13
=13a
7
,∴S
13
为常数.
★答案★:C
2.设等差数列{a
n
}的前n项和为S
n
,S
m
-
1
=-2,S
m
=0,S
m
+<
br>1
=3,则m=( )
A.3
C.5
B.4
D.6
解析:a
m
=S
m
-S
m
-1
=2,a
m
+
1
=S
m
+
1
-S
m
=3,
∴d=a
m
+
1
-a
m
=1,由S
m
=
a
1
+a
m
m
=0,
2
知a
1
=-a
m
=-2,a
m
=-2+(m-1)=2,
解得m=5.
★答案★:C
a
5
5S
9
3.设S
n
是等差数列{a
n
}的前n项和,若=,
则等于________.
a
3
9S
5
a
5
2a
5
a
1
+a
9
5
解析:由等差数列的性质,===
,
a
3
2a
3
a
1
+a
5
9<
/p>
ruize
9
a
1
+a
9
S
9
2
95
∴==×=1.
S
5
559a
1
+a
5
2
★答案★:1
4.设等差
数列{a
n
}的前n项和为S
n
,已知前6项和为36,最后6项和为180
,S
n
=324(n>6),
则数列的项数n=________,a
9+a
10
=________.
解析:由题意,可知a
1
+a
2
+…+a
6
=36
①,a
n
+a
n
-
1
+a
n
-
2
+…+a
n
-
5
=180 ②,由①
+②,得(a
1
+a
n
)+(a
2
+a
n
-
1
)+…+(a
6
+a
n
-
5
)=6(a
1
+a
n
)=216,∴a
1
+a
n
=36.又S
n
=
na
1
+a
n
=324,∴18n=324
,∴n=18,∴a
1
+a
18
=36,∴a
9
+a
10
=a
1
+a
18
=36.
2
★答案★:18 36
3205
5.等差数列{a
n
}
的前n项和S
n
=-n
2
+n,求数列{|a
n
|}的前n
项和T
n
.
22
解析:a
1
=S
1
=101,当n≥2时,
3
3205
-n-1
2
+
a
n
=S
n
-S
n
-
1
=-n
2
+n-
2
22
205
n-1
=-3n+104
,a
1
=S
1
=101也适合
2
2
上式
,所以a
n
=-3n+104,令a
n
=0,n=34,故n≥35时,a<
br>n
<0,n≤34时,a
n
>0,所以
3
3205
对
数列{|a
n
|},n≤34时,T
n
=|a
1
|+|a<
br>2
|+…+|a
n
|=a
1
+a
2
+…+a
n
=-n
2
+n,
22
当n≥35时,T
n=|a
1
|+|a
2
|+…+|a
34
|+|a
35
|+…+|a
n
|=a
1
+a
2
+…+a<
br>34
-a
35
-…-a
n
3205
=2(
a
1
+a
2
+…+a
34
)-(a
1
+a
2
+…+a
n
)=2S
34
-S
n
=n<
br>2
-n+3 502,
22
-
2
n+
2
nn≤34,
所以T=
3205
n-
22
n+3 502n≥35.
2
n
2
3205
S
n
6.设{a
n
}为等差数列,S
n
为数列{a
n
}的前n项和,已知S
7
=7,S
15=75,T
n
为数列
n
的前
n项和,求T
n
.
解析:设等差数列{a
n
}的公差为d,
1
则S
n
=na
1
+n(n-1)d,
2
∵S
7
=7,S
15
=75,
7a
1
+21d=7,
∴
15a+105d=75,
1
a
1<
br>+3d=1,
a
1
=-2,
即解得
<
br>
a
1
+7d=5,
d=1,
ruize
S
n
11
∴=a
1
+(n-1)d=-2+(n-1),
n22
∵
S
n
+
1
S
n
1
-=,
n+1
n2
S
n
1
∴数列
n
是等差数列,其首项为-2,公差为,
2
n·n-1
11
2
9
∴T
n
=n×(-2)+×=
n-n.
2244