高中数学第二章数列2.2.1等差数列的概念与通项公式思维导图素材新人教A版必修5
龟兔赛跑原文-前世今生缘
that deal in data, the oil of the digital
age. The most valuable firms are Google,Amazon,这个问
题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮个包裹对宇宙未来的预言,其关键问题在于宇宙的
平均密度是多少。
Sport is not only physically
challenging, but it can also be mentally精神上地)
challenging. Criticism from coaches and other
teammates, as well as pressure to win can create a
great amount of stress for young
athletes.
等差数列的概念与通项公式
【思维导图】
【微试题】
a
1.一个等差数列的前4项是
a
,
x
,
b,
2
x
,则等于( )
b
1112
A.B.C.D.
4233
【答案】C
<
br>2.已知等差数列{
a
n
}的公差为
d
(
d
≠0),且
a
3
+
a
6
+
a
10
+
a
13
=32,若
a
m
=8,则
m
为(
)
A.12 B.8 C.6 D.4
1
that deal in data, the oil of the
digital age. The most valuable firms are Google,Am
azon,这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮个包裹对宇宙未来的预言,其关
键问题在于宇宙的平均密度是多少。
Sport is not only physically
challenging, but it can also be mentally精神上地)
challenging. Criticism from coaches and other
teammates, as well as pressure to win can create a
great amount of stress for young
athletes.
【答案】B
3.设等差数列
A.
的公差为d,若数列
C.
为递减数列,则( )
D.
B.
【答案】C
4. 已知{
a
n
}是等差数列,且<
br>a
1
+
a
2
+
a
3
=12,
a
8
=16.
(1)求数列{
a
n
}的通项公式; <
br>(2)若从数列{
a
n
}中,依次取出第2项,第4项,第6项,…,第2n
项,按原来顺序组成一个新数列{
b
n
},
试求出{
b
n
}的通项公式.
【答案】(1)
a
n
=2
n
; (2)
b
n
=4
n
【解析】解: (1)∵
a
1
+
a
2
+
a
3
=12,∴
a
2
=4,
∵
a
8
=
a
2
+(8-2)
d<
br>,∴16=4+6
d
,∴
d
=2,
∴
a
n
=
a
2
+(
n
-2)
d
=4+(
n
-2)×2=2
n
.
(2)
a
2
=4,
a
4
=8,
a
8
=16,…,
a
2
n<
br>=2×2
n
=4
n
.
当
n
>1时,
a
2
n
-
a
2(
n
-1)
=4
n
-4(
n
-1)=4.
∴{
b
n
}是以4为首项,4为公差的等差数列.
∴
b<
br>n
=
b
1
+(
n
-1)
d
=4+4
(
n
-1)=4
n.
2