北师大版九年级数学教材分析
蚂蚁搬家要下雨-广告合同
北师大版九年级数学教材分析
九年级上册数学教材分析
1.本册内容结构
⑴本册内容分属几何、代数、概率三个领域,具体牵涉到:
几何:图形与证明——特殊的平行四边形;认识图形——视图与投影。
代数:方程——一元二次方程;函数——反比例函数。
概率:建立概率概念——概率的频率定义与多种求值方法。
⑵不同内容之间的联系(逻辑框架与方法)
1.本册内容与教材其他各册相关内容的联系:
特殊的平行四边形;“一元二次方程”、“反比例函数”
和“一元一次函数”、“一元二次函数”;“视
图与投影”和“空间图形”、“平行”、“相似”;“频率与概率”
与先前的概率实验等。
2
.各部分内容的设计要点:(关于证明学习的要点说明——不能够仅仅将证明的教学基本目标定位
成确认
命题的正确性;还应当包括对证明本身的学习:证明的必要性,数学证明的含义,证明的基本过
程,证明
的基本方法,由证明而获得的理解和发现。)
第一章 特殊的平行四边形:对“公理”意义的进一步理
解;关注“证明的基本方法”、“获得证明
策略的不同思路”、“由证明而导致的新发现”,特别地,对
于“反证法”的逻辑合理性的理解。
(1)证明的思路与以前直观探索的联系;出现的新命题的探索及
证明的思路。证明方法的学习、
获得证明的策略;
本册主要是对这些结论进行理论的证明。但
这并不意味着我们在前几册中的直观探索就没有用
处了,事实上,前面学生借助折纸、画图等活动进行直
观探索的过程和方法为本章的证明提供了铺
垫,为学生提供了定理相应的证明思路。如在证明等腰三角形
的两个底角相等时,教材先给出了证
明的思路,即由当时利用折纸来探索此结论的方法,而想到通过连接
底边的中线构造全等三角形,
从而证明两个角相等。
除了学生已经直观探索过的命题外,教材
中还涉及了一些学生没有探索过的新命题。这些命题
的获得有的是直接通过证明得到的,而有的则创设了
一些问题情景,通过合情推理获得的,但此时
证明是必须的。要使学生意识到证明是探索活动的自然延续
和必要发展,使学生经历“探索——发
现——猜想——证明”的过程,体会合情推理与论证推理在获得结
论中各自发挥的作用,进一步发
展学生的推理证明意识和能力。如对于命题“直角三角形中,30所对的
边等于斜边的一半”,教材
引导学生拼摆三角板,去发现其边之间的关系,但我们不能只满足于结论的获
得,要积极探索证明
的思路和方法。事实上,探索的过程为证明时辅助线的添加提供了思路,为证明奠定
了基础,这些
都希望教师在教学时能够充分的意识到。
教材还注意引导学生探索证明的不同思
路和方法,并进行适当的比较和讨论,开阔学生的视
野,培养学生的思维能力,如在一种证明结束后提出
问题“你还有其他的证明方法吗?与同伴交流”。
此外,教材还注意渗透数学的思想方法,如由特殊结
论到一般结论的归纳思想、类比、转化
的思想方法等。如在证明等腰梯形的两个底角相等时,教材在分析
证明思路时指出将等腰梯形的两
个底角转化为等腰三角形的两个底角,从而证明其相等——明确方法的学
习。
(2)关注命题的拓展、引申,引导学生发现规律,发展概括抽象的能力。证明加深理解
特殊的平行四边形的设计上注意到了对学生数学学习方法的指导和思维能力、水平的指导和培养,
1
0
为学生设置了可将结论进行推广和一般化的空间,希望通过命题
的拓展,为学生创造深入思考数学问题
的机会。比如在证明“等腰三角形两底角的平分线相等”并提出“
等腰三角形两腰上的中线相等吗?高
呢?”等问题之后,教材在“议一议”中设置了相应的两个拓展问题
,分别从角的变化和线段的变化两
个角度出发,对前面已经讨论过的特殊结论进行了一般化的推广。对这
种拓展型的命题,教师在教学时
应当注意引导学生发现规律、对数学现象进行概括和抽象,并强化和渗透
归纳、类比、转化等思想方法,
从而提高学生的数学思维能力。
(3)对公理化方法的体会。
需要注意的是,依据标准的要求,在北师大版教材中,证明部分的内容可以看作是一个局部的公理
体系,即从给定的6条公理及有关概念的定义出发,通过逻辑推理证明,得到平行线、三角形和平行四
边形等基本图形的有关结论。因此特殊的平行四边形中所有的命题,其证明的前提只能是教材中提供的
公
理和已经证明过了的定理。而这也就是教材中为什么在P35例题中证明“等腰直角三角形的底角等于
4
5°”和“有一个角等于45°的直角三角形是等腰三角形”这两个看似十分简单的结论的原因。
因此
,教师在教学时要注意引导学生体会公理化的数学思想方法,发现直观探索和证明、合情推
理和演绎推理
之间的区别,从而认识到合情推理与论证推理之间的相互依赖和相互补充的辨证关系。
通过对公理体系
的了解,学生能够认识到在数学中证明的必要性和如何进行证明以及证明的基本
方法等,是我们讲授证明
这几章的基本目的。
第二章:一元二次方程:延续处理方程的基本思路:模型——求解——应用(与函
数的联系在后
面谈)。如“花边有多宽”、“梯子的底端滑动多少米”等,创设贴近学生生活的现实情境
,让学生从具
体的实例出发,经历模型化的过程,然后在此基础上抽象出数学概念和数学问题。让学生在
“问题情境
——建立模型——应用”的过程中体会模型化的思想,从而感受到数学的应用价值。
在求解方程过程中关注数学思想方法——化归,理解在求解程序上具有一般意义的“配方法”的
实质;
同时,介绍求解方程的另一种思路——通过估算而获得近似解;对于方程的应用,仍然是突出运
用数量关
系建立适当的数学模型。
1.估计方程的解的意义。
本章与以往的方程内容有所不同,增加
了估计近似解的内容。增加这一内容,一方面可以促
进学生对方程解的理解,发展学生的估算意识和能力
;另一方面又为方程精确解的研究作了铺垫,
激发学生探求精确解的欲望,从而可以在此基础上自然地引
入以后求精确解的内容。另外,教材中
“地毯的花边”、“梯子的底端滑动多少米”等问题都是借助“夹
逼”的方法逐步获得近似解的。应
当说,夹逼思想是近似计算的重要思想。所以,教师应当在教学中注意
引导学生体会夹逼思想在数
学解题中的运用。
2.估算本身也是一种解某些方程的方法。 <
br>通过估算而获得近似解——有助于学生理解方程解的含义、体会借助计算机获得方程解的想法、
发
展估算能力;
3.方程的解法
一元二次方程的精确求解方法有配方法、公式法、分解因式
法等。教材中先研究的是可应用于
求解任意一个一元二次方程的配方法、公式法。其中配方法可以说是公
式法得来的根本,公式法中
根的一般表达式就是由配方法解一般的一元二次方程得到的。而公式法是配方
法的一般化和程式化,
任意一个一元二次方程只要将方程化成一般形式,就可以直接代入公式求解。因此
我们要求学生能
2
够理解配方法,体会公式法的由来。
对于一些特殊的一元二次方程,教材还引入了一种特殊的求解方法——分解因式法,分解因式法
把一个一
元二次方程化为两个一元一次方程方程来解,这种降次的思想是处理髙次方程的一种重要思
想,教师要注
意在教学时对这种思想进行渗透。对于方程的一般解法,突出基本的数学思想方法,而不
是具体的求解程
序;解方程的具体技巧(因式分解法等)。
4.方程应用的体现。
教材力图把方程的应用渗
透在各节之中,如第一节中的“地毯的花边有多宽”,第二节中的“花
园的设计方案”,第五节中的“冰
箱定价问题”以及各节的习题中都安排了一定的应用性问题,从而
将列方程、解方程和对方程的解的解释
融为一体,而不是割裂开来进行处理,这样可以使学生在本
章的学习中能够比较完整地经历一个从具体情
境中抽象出数学问题,然后对数学问题进行研究和解
决,再利用数学知识解释实际问题的全过程,感受一
元二次方程的应用价值,理解数学与现实世界
之间的联系。这也使得“模型——求解——应用”的过程得
以完整地体现。
P68:讨论解应用型问题的关键。
第三章:概率的进一步认识:借助
频率定义概率(不是古典定义)——重在对概率概念的理解,
而不是求得事件发生的概率(古典概型的求
解更多地借助树状图、列表等)。突出求解概率问题的最基
本方法——实验;了解随机的含义、了解统计
与概率的联系。
1.通过实验(两步实验)继续渗透频率与概率的关系
学生在七年级已
经认识了许多随机事件。本册是在原来一步实验的基础上,借助两步实验继续渗
透频率和概率的关系。首
先以涉及两步实验的事件发生的概率问题为切入口,教材一方面加强前后知识
的联系,另一方面,通过实
验活动让学生领悟到“当试验次数较大时,试验频率稳定于理论概率”这一
结论的含义,进一步加深学生
对概率的理解,同时授予学生两种计算随机事件发生的概率的理论方法—
—树状图和列表法。
教师在借助两步试验渗透频率和概率的关系时,需要注意两个问题。一是“当试验次数很大时,
频率稳定
在概率附近”并不意味着试验次数越大,频率就越为靠近理论概率。有可能出现这样的情形:
增加了几次
试验,试验数据和理论概率的差距反而扩大了;二是在利用树状图和列表法来求事件发生的
概率时,其使
用前提必须是各种情况出现的可能性要相同,即等可能性是我们求理论概率的前提。
2.用实验的方法,以频率估计概率的应用
概率计算有理论计算和试验估算两种方式。对于一
些比较复杂的问题,虽然存在着理论概率,但
其理论计算已经超过了学生的接受能力,学生只能借助试验
模拟获得其估计值。教材针对这类问题,选
取了既联系学生的生活实际,同时又有一定的趣味性和可操作
性的投针问题和生日问题。
首先对于投针问题,教材希望学生能够经历具体的试验操作、统计等活动,
获得一定的活动经验,
并在活动中进一步发展学生的合作交流的意识和能力。在投针问题之后,教材接着
引入了贴近学生生活
的生日问题。这个问题的理论概率与学生的常识大相径庭,具有一定的趣味性。另外
其理论计算超出了
学生的理论计算水平,因此试验估算的作用就体现的更为明显。
3.对模拟试验方法的认识和掌握
通过投针问题和生日问题两个活动,学生们对试验估计概率
的方法已经有了一定的认识。那么,
在此基础上,教材还鼓励学生利用带编号的小球等实物或现代信息技
术手段(计算器、计算机或其他媒
体)进行模拟实验。其理由有两点:首先采用模拟试验方法可以解决不
具备试验条件的问题,比如手头
3
没有硬币,而又需要做掷硬币试
验时,我们可以借助计算器产生随机数进行模拟。其次,采用模拟试验
尤其是借助计算器和计算机进行模
拟试验的方法,可以实现通过大量的模拟实验获得更为准确的实验结
果,进一步加深对频率和概率关系的
理解。
3、设计恰当的模拟试验也是提高学生概率模型理解水平的一个有效方法。
需要注
意的是,在利用模拟试验方法进行试验时,试验结果未必具有很好的精确度。但教师只要
让学生体会到试
验次数很大时,结果将较为精确即可。概率模型:关注统计与概率的联系——揭示统计
推断的一些理论依
据(第4节);感受随机观念;了解统计与概率的联系。课题学习:这是一个比较典
型的“做数学”活动
——猜想、尝试、证明、拓广(提出问题)。其中的思维过程非常重要。让学生在
解决一个个看似简单又
具有挑战性的问题的过程中,不断经历判断、选择及综合运用二次方程、方程组、
不等式、函数等知识,
经历“做数学”的过程。 这是一个具有开放性意义的研究课题,主要意图不在
于回答一些具体问题,而
是设置一种思考、探究的氛围,在活动中体现归纳、综合和拓展,感悟处理问
题的策略和方法,积累数学
活动的经验。
教材设计特点:为学生自主探索留有较大空间,通过“做一做”积累经验、“想一想”诱
导发现;“议
一议”中提出的问题均有一定深度又有相当大的弹性,不同的学生可以找到自己感兴趣的问
题,在“读
一读”中引出两种思路,对问题解决有很大启发性。
第四章 图形的相似:从实际
问题引入数学内容,通过对实际问题的分析解决得出结论,认识相似
图形的特征与性质,让学生充分感受
到数学与现实世界的联系。通过观察、测量、画图、推理等方法让
学生探索得出结论,强调发现结论的过
程,加强合情推理。逐步渗透一些逻辑思维方法,体现数学的理
性特征,教材中给学生留下适当的探索空
间,也给教师的教学留有一定的余地,有助于学生的思维活动,
有助于教师的创造性教学,也有助于教师
与学生的合作。强调相似三角形在现实生活中的应用。
1、相似的图形:通过生活中的实例认识物体和
图形的相似,知道相似与轴对称、平移、旋转一样,
也是图形之间的一种变换。
2、相似图形
的性质:探索并确认相似图形的性质,知道相似多边形的对应角相等,对应边成比例
以及面积比的关系。
了解线段的比、成比例线段的概念,会判断已知线段是否成比例,了解黄金分割。
3、相似三角形:了
解相似三角形的概念,探索两个三角形相似的条件,探索相似三角形的主要性
质,即两个相似三角形对应
的高线、中线、角平分线、以及周长、面积的比与相似比的关系。能利用相
似三角形的性质解决一些简单
实际问题。
4、中位线:了解三角形和梯形的中位线定理、三角形重心的概念以及有关应用。 5、画相似图形:图形的位似,能利用位似的方法,将一个图形放大和缩小。主要是让学生在实际
应
用中了解位似的概念,教材是通过画一个多边形的相似图形的方法引入位似的概念,主要让学生掌握
用位
似的方法把一个多边形放大和缩小的几种方法,教学时就可以让学生按照书上的步骤自己画图。
6、图形与坐标:能建立适当的坐标系,描述物体的位置. 能灵活运用不同方式确定物体的位置。在同一直角坐标系中,感受图形变换后点的坐标的变化。在观察、操作、推理、归纳等探索过程中,发
展学生的合情推理能力,进一步培养学生的演绎推理能力。
个人想法
1、本章强调合情
推理与逻辑推理相结合,在教学过程中,推理格式的书写需要强调。如:书写△
ABC∽△DEF时,须
把对应点写在对应的位置上;对应线段成比例时的写法也应注意;也可以适当介绍
推出符号的应用。
4
2、难度的把握:可以根据教学的需要适当补充一些内容。如:
线段成比例的基本变形;平行线分
线段成比例。
3、 能力与情感的培养:本章有很多内容需
要让学生用量角器、刻度尺来测量,锻炼学生动手能
力,并体会数学知识是从实践中产生出来的,确认数
学是有用的。所以教师在课堂要给学生充裕的时间,
重视对学生技能的训练与培养。
4、 识
图能力的培养:教师在教学中应当引导学生认识基本图形,并使学生会描述基本图形的对
应关系,以及在
复杂图形中分离出基本图形。
第五章 投影与视图:视图与投影学习的基本定位;基于生活经验的学习
、高于生活经验的认识—
—平行投影、中心投影。平行投影与视图、相似;中心投影与视点;
1、 视图、投影的主要内容和目标
在投影部分,教材主要对平行投影与中心投影,视点、视
线和盲区进行了初步的探讨。首先对
于生活中大量存在的影子现象,教材提供了一系列与点光源、太阳光
源所形成的影子有关的生活实
例,让学生通过观察,归纳出点光源与太阳光源所形成影子的各自规律。然
后教材将人眼与点光源
进行类比,视线与点光源发出的光线类比,影子与盲区类比,在中心投影之后安排
了视点、视线和
盲区等内容。教师在教学时要注意让学生经历实践、探索的过程,了解平行投影、中心投
影的含义,
并为学生提供大量实例让他们了解视点、视线、盲区的概念,体会其在现实生活中的应用。其
中结
合生活实例,发展学生的空间观念,提高学生把握空间的能力是本部分教学的主要目的。
2、投影与视图的关系
教师在教学时应当把握投影和视图之间的关系。投影和视图两个内容看似相互独
立,实际上却
有着密切的联系。视图可以看作是投影的特殊情况,在特殊位置下物体的平行投影就是物体
的三种
视图。
第六章:反比例函数:延续处理一次函数的基本思路:模型——探究性质——应
用。研究函数性
质的具体方法:从观察图像入手,过渡到获得相应的代数结论,突出对于函数数学特性的
形象化感受;
同时,在研究方法、研究对象方面,给学生以进一步的感性认识(结合一元一次函数);对
于应用,则
提倡多种解决方法的综合使用。
1.模型化思想的体现
反比例函数作为
一种特殊的函数形式是研究现实世界变化规律的数学模型之一。在原有对函数的
模型化特征的认识的基础
上,本章同样采用一定的实例来体现反比例函数在刻画显示问题中的作用,让
学生经历分析实际情境,建
立函数模型,并进一步提出明确的数学问题,然后解决问题的过程。教师在
教学时应当注重函数概念的形
成过程和对函数概念的理解,注意对数学问题进行分析的过程,引导学生
从实际背景中发现原型的本质属
性,抽象出反比例函数的表达式,通过用数学语言对实际问题进行解释,
让学生经历数学化的过程,逐步
学会用数学的眼光考察实际问题。其中,模型化思想就渗透在数学化的
过程中。
2.反比例函数性质的探索及设计
在反比例函数性质探索这部分内容中,教材希望学生能够观
察、归纳、探索、概括、发现规律,
获得对反比例函数图形性质的认识。因此教材为学生提供了一些实例
,如给出y=4x,y=-4x的图象以
及y=2x,y=4x,y=6x图象,希望学生能通过观察具
体的实例,通过归纳得出反比例函数图象的共同特
征,从而探索出反比例函数的主要性质。
5