2020年四年级下册乘法运算定律专项练习题
二本压线的公办大学-漱玉词
(名牌小学word资料可编辑)建议下载永久收藏
四年级下册乘法运算定律专项练习
姓名:
乘法交换律、乘法结合律
1、乘法交换律:交换两个因数的位置,积不变。用字母表示为: a × b = b × a
2 、多个数相乘,任意交换因数的位置,积不变。如 a × b × c × d = b × d
× a ×
c
3
、乘法结合律:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。永宁字母表 示
为: ( a
× b )× c = a ×( b × c )
4
、在乘法算式中,如果其中两个因数的积为整十、整百、整千数时,可以运用乘法交换
律、
乘法结合律来改变运算顺序,从而简化运算。
如: 125 × 25 × 8
× 4
= 125 × 8 × 25 ×
4---------------------------- 乘法交换律
=(
125 × 8 )×( 25 × 4 ) ----------------- 乘法结合律
= 1000 × 100
= 100000
4
、乘法交换律、乘法结合律的结合运用
8 ×( 30 × 125 )
5 ×( 63 × 2 ) 25 ×( 26 × 4 )
( 25 × 125 )× 8 × 4 78 × 125 × 8
× 3 25 × 125 × 8 × 4
125 × 19 × 8 × 3 ( 125 × 12 )× 8
( 25 × 3 )× 4
12 × 125 × 5
× 8
5 、运用乘法交换律、乘法结合律简化运算的
实质与算式特点实质:把其中相乘结果为整
十、整百、整千的两个因数先相乘。通常利用的算式是:
2 × 5 = 10 ; 4 × 25 = 100 ; 8 × 125 = 1000 ;
625 × 16 = 10000 ; 25 ×
8 = 200 ; 75 × 4 = 300
; 375 × 8 = 3000. 特点:连乘‘
6 、在乘法算式中,当因数中有
25 、 125 等因数,而另外的因数没有 4 或 8 时,可
以考虑
将另外的因数分解为两个因数相乘、 其中一个因数为 4 或 8 的形式, 从而利用
乘法交换律、
乘法结合律使运算简化。
如: 25 × 32 × 125
=
25 × (4 × 8) × 125
=( 25 × 4 )×( 8 ×
12 5 )
= 100 × 1000
= 100000
4 、将因数分解
48 × 125 125 ×
32 125 × 88
75 × 32
× 125 65 × 16 × 125 36 × 25
(名牌小学word资料可编辑)建议下载永久收藏
25 × 32 25 × 44
35 × 22
75 × 32 × 125
4 × 55 × 125 25 × 125 × 32
25 × 64 × 125 32 × 25 × 125
125 × 64 × 25
125 × 88
48 × 5 × 125 25 × 18 125 × 24
4 、乘法交换律: a × b = b × a
25 ×
37 × 4 75 × 39 × 4 65 × 11 ×
4
125 × 39 × 16 8 × 11
× 125
5 、乘法结合律: ( a × b )× c = a ×(
b × c )
38 × 25 × 4 65 × 5 ×
2 42 × 125 × 8
6 ×( 15
× 9 ) 25 ×( 4 × 12 )
三、乘法分配律 1
、乘法分配律:两个数的和与一个数相乘,可以先把他们与这个数
分别相乘,再把所得
的积相加。用字母表示为: ( a + b )× c = a × c + b × c
2
、两个数的差与一个数相乘,可以把它们分别与这个数相乘,再把所得的积相减。用字 母
表示为: (
a - b )× c = a × c - b × c
4 、以上几个算式均可以逆用,即:
a × c + b × c =( a + b )× c
a × c - b × c
=( a - b )× c
5
、乘法分配律的理解:以上几个算式应注意利用乘法的意义进行理解: a + b 个 c 等
于 a
个 c 加上 b 个 c ,而不能单纯地依靠记忆,只有这样才能在运算中熟练运用,减少
失误。
6 、乘法分配律的实质与特点:
实质:利用乘法的意义将算式转化为整十、整百数的
乘法运算。 特点: 两个积的和或差,
其中两个积的因数中有一个因数相同; 或两数
的和或差乘一个数。
7
、当算式中没有相同的因数时,考虑利用倍数关系找到相同因数。
如: 16 × 98 +
32
= 16 × 98 + 16 × 2-------------
利用倍数关系将 32 转化为 16 × 2 ,从而找到相同
的因数 16
= 16 ×( 98+2 ) --------------- 乘法分配律的逆用
= 16 × 100
= 1600
7
、利用倍数关系找到相同因数。
246 × 32+34 × 492
321 × 46 — 92 × 27 — 67 × 46
(名牌小学word资料可编辑)建议下载永久收藏
35 × 28+70
43 × 126 — 86 × 13 39 × 43 — 13 × 29
21 × 48+84 × 13 68 × 57 — 34 × 14
26 × 35+32 × 52+26
8
、当因数与整十、整百数接近时,可以转化为分配律进行简化运算。
如: 75 × 101
= 75 × (100+1)----------------- 将 101 转化为
100+1
= 75 × 100+75 × 1-------------
乘法分配律
= 7500 + 75
= 7575
8 、当因数与整十、整百数接近时,可以转化为分配律进行简化运算。
32
× 105 103 × 56 32 × 203
239 × 101
88 × 102
199 × 99 99 × 26 98 × 34
75 × 98 99 × 11 13 × 98
25 × 98 98 × 38
8 、乘法分配律
( 125 + 9 )× 8 ( 25+12 )×
4 ( 125+40 )× 8 (20+4) × 25
( 100+2 )× 99 64 ×
64+36 × 64 25 × 6+25 × 4
88 × 225+225 × 12 136 × 406+406 ×
64 66 × 93+93 × 33+93
35 × 68+68+68 × 64
36 × 97 — 58 × 36+61 × 36
45 × 68+68 × 56 — 68 99 ×
99+99 89 × 99+89
49 × 99+49 99 × 38+38
87 × 99+87 68 × 99+99
(名牌小学word资料可编辑)建议下载永久收藏
9 、 ( a — b )× c=a × c — b × c
64 × 15
— 14 × 15 102 × 59 — 59 × 2 456 × 25 — 25
× 56
124 × 25 — 25 × 24
101 × 897 — 897
76 × 101 — 76 101 × 26 — 26
101 × 37 — 37