数的整除
优秀板报设计展示-个人总结思想方面
数的整除检测题
一、填空
1、能被3整除的最小三位数是(
),能被5整除的最大三位数是( )
2、有因数2,又能被3整除,而且还是5的倍数的最小三位数是( )
3、自然数a除以自然数b,商是15,那么a和b的最大公约数是( )。
4、如果两个数是( )关系,那么最大公因数是较小数。
5、如果两个数是互质数关系,那么最大公因数是( )
6、如果两个数是(
)关系,那么最小公倍数是它们的乘积。
7、如果两个数是(
)关系,那么最小公倍数是较大数。
8、a÷b=6(a,b都是非0自然数),a是b的(
)数,b是a的( )数。
a和b的最大公因数是(
),a和b的最小公倍数是( )。
9、在6, 9, 15, 32, 45,
60这六个数中,3的倍数的数是( );
含有因数5的数是(
);既是2的倍数又是3的倍数的数是( );
同时是3和5的倍数的数是(
)。
10、一个数的最大因数是36,这个数是( ),把它分解质因数是(
)。
11、493至少增加( )才是3的倍数,至少减少(
)才有因数5,至少增加( )
才是2的倍数。
12、A=2×2×3×7,B=2×2×2×7,A和B的最大公因数是(
),最小公倍数是
( )。
13、14、※三个质数的最小公倍数是231,这三个质数是( ),(
),( )。
15、※用2,3,5去除都余1的数中,最小的数是(
)。
16、※根据条件在下面括号里填上适当的数。
质数 奇数
偶数 质数 奇数
20﹤( )﹤(
)﹤( )﹤( )﹤( )﹤32
二、判断
1、两个相邻的自然数一定是互质数。( )
2、甲数除以乙数,商正好是8,所以甲数能被乙数整除。 ( )
3、如果A=B×C,那么A能被B或C整除;B或C能整除A。 ( )
4、任意两个质数的和都能被2整除。 ( )
5、15的质因数是3和5。 (
)
6、所有的偶数都是合数,所有的合数不一定都是偶数。(
7、自然数可以分成质数和合数。( )
8、两个质数的和一定是合数。
9.22和21没有公有的因数,所以22和21是互质数。
(
10、1是任何自然数的因数。( )
11、因为5÷2=2.5,所以5是2的倍数
,2是5的因数。(
12、一个数的因数总比倍数小。 ( )
13、奇数乘以奇数,积一定是偶数。( )
14、大于2的偶数都是合数。 (
)
15、两个质数的积一定是合数。 ( )
16、互质的两个数不一定都是质数。
( )
选择题
1、下列关系中,整除的算式是(
)。
)
)
)
A.18÷5=3.6 B.12÷2=6 C.46÷0.2=92
D.25÷50=0.5
2、a÷b=c(a、b、c均为自然数,b不等于0),那么( )。
A.a能整除b B.a能被b整除 C.c能整除b D.b能被a整除
3、要使四位数248□能同时被2和3整除,则方框里应填( )。
A.0
B.1 C.4 D.7
4、两数的和是60, 最大公约数是15,
这两个数是( )。
A.15和45 B.10和50 C.25和35
D.5和55
5、下列每组数中,互质的两个数是( )
A.4和6
B.6 和9 C.25和26 D.26和91
6、48是6和8的( )
A.公倍数 B.公因数 C.最大公因数 D.最小有关数的
7、两个奇数的和( )
A.是奇数 B.是质数
C.是偶数 D.是合数
8、1、2、3、5、都是30的( )
A.质数 B.质因数 C.因数
9、有一个数,用12及8去除它,都刚好除尽,这个数最小是( )。
A.24
B.180 C.72 D.36
10、下列说法中,错误的是 ( )
A、没有最大的整数
B、3.9能被3除尽
C、0能被任何整数整除
D、1,2,3,4,5都能整除60
11、下列说法中正确的有( )
五个连续偶数之和必能被5整除 任何一个偶数加上1,得到的数是奇数
所有的整数不是奇数就是偶数
A、0个 B、1个
C、2个 D、3个
三、将下面几个数分解质因数
66
72 495
四、用短除法求 36和48的最大公因数和最小公倍数。
五、求出下面各组数的最大公因数
1和15
42和60 12
六、求出下面各组数的最小公倍数
25和30
3和14 20
、18和24
、40 和60