轴对称集体备课

萌到你眼炸
912次浏览
2021年01月21日 00:52
最佳经验
本文由作者推荐

酸菜鱼的做法和步骤图-

2021年1月21日发(作者:凤栖)






轴对称教学设计





冀教版〈数学〉八年级上册第十五章由六节内容两大部分组成:

15

1
生活中的轴
对称》


15

2
简单的轴对称图形》


15

3< br>轴对称的性质》


15

4
利用轴对称设计图案》

15

5
等腰三角形》


15

6
回顾与反思》
。如何通过这六部分的教学激发学生的兴趣,
增强学生对 数学美感的体会,引导学生运用“数学“的眼光观察现实世界,体会数学的广
泛应用。在研读文本、设计 教学的过程中,我们越来越强烈的感受到教一节课,眼光绝不
能只盯着这一节课,不能只是让学生理解轴 对称图形的性质和性质的简单应用,而应注重
学生数学活动经验的形成和积累及数学思考的展开和培养。

教材文本的解读

按照义务教育阶段新课程标准的要求,五章知识数学的重是以下四个方面。

一、知识 与技能方面,关注学生对轴对称图形及其基本性质和等腰三角形的性质识别
条件的理解与应用。

二、数学思考方面,关注学生在学习活动中所表现出的科学性和创造性。

三、
分析与解决问题方面。
关注学生利用轴对称的相关知识探究图形性质的应用意识。

四、在情感态度价值观方面。关注学生的学习态度是否积极,以及能否从数学的角度
思考问题。

本章前五节的课后练习都是围绕上目标来设计的,

15

1
生活中的轴对称》课后练

1
,如图(
1
)指出图中那些是轴对称 图形?并画出对称轴,是训练学生识别轴对称和运
用。

15

2< br>简单的轴对称图形》课后练习
1
,已知:点
P

Q
为 线段
AB
垂直平分线上的
点,如图
(2)
所示,当点
P
Q
在线段
AB
两侧时你认为<
PAQ
和<
P BQ
相等吗?为什么?

























































B





















1


Q

2


实质就是判断三角形
PAQ
和三角形
PBQ
是否为轴对称图形,探 索线段垂直平分线、角的
平分线性质中体会轴对称的特征。

15

3
轴对称性质》课后练习
(
如图
3)
画出三角形
ABC关于直线
L
对称的图形,是利用轴对称图形的性质来解决问题,让学生体会实际生活中的< br>许多问题都可以从数学的角度来思考。如《
15

4
利用轴对称设计图 案》中课后练习
1

请你收集三个——五个不是轴对称图形的不同标志的图案,并找出 他们的对称轴,更是说
明了这一点。

15

5
等腰三角形 》练习(如图
4
)在三角形
ABC
中,已知
AB=AC
,点
D

AC
上且
BD=BC=AD


1


请你指出图中所有的等腰三角形


1

2


求<
A
的度数

是轴对称在探究图形特征中的应用。
A
L
A D
B B C


3

C (4)

明确了教学目标方向,我们来分析每节教学内容。

15

1
生活中的轴对称》这一节是
通过对现实生活中的 事物及图片的观察、操作来认识轴对称的,突出“感性认识——实践
尝试——归纳概括“这样的活动过程 ,充分让学生在观察中感受对称的特征。在实践中探
索性质。具体安排是:

1
、对称图形概念的形成。


1


“观察图片”——发现“共同特征”



2


“大家谈谈”——让每个学生发言,以形成共识。

2
、数轴对称的进一步感受:


1


画对称轴。


2


剪出轴对称图形。


3


观察、操作、认识。


15.2
简单的轴对称图形》本节是经历探索线段和角的轴对称性质的过程,进一 步
体验轴对称的特征,发展合情推力能力。设计了三个环节:


1


做一做

目的是让学生在画线段垂直平分线的过程中,
经历概念的形成过程。


2


观察与思考

在学生建立线段垂直平分概念的基础上,通过折纸操作来得出
线段垂直平分线的性质。


3


一起探究

目的是从角的对称性出发,在折纸的过程中探究出角平分线的性
质。


15. 3
轴对称的性质》本节利用剪纸的操作探索轴对称的基本性质,并通过由 简到
繁的一系列实践活动,使学生在应用中进一步认识轴对称的性质。通过“一起探究”在剪
纸 操作中,引导学生观察每一组对应点与折痕之间的位置关系,以及对应线段、对应角之
间的数量关系,测 量等手段来验证,从而形成对轴对称性质的深刻认识。借助在网格上画
图从中体会对称点的特征。


15.4
利用轴对称设计图案》

本节是利用轴对称进行图案设计,从而体验轴对称在

2
现实生活中的应用 。具体设计是:
“观察与思考”通过观察,让学生感受到某些复杂图案
是在简单图形的基础上经 过多次对称形成的。
“做一做”安排有趣的实践活动中,完成一
个简单图形的基本方法,引导学 生识别图形的关键点,并注意如何找关键点的对应点。


15.5
等腰三 角形》是轴对称的实际应用。本节是通过“做一做”来认清图形中的
相关元素的名称,引导学生经历折叠 后剪纸,展开后得到等腰的过程,使学生体会到等腰
三角形是轴对称图形。在“一起探究”中借助轴对称 性质探索等腰三角形两底角的关系,
以及“三线合一”的性质。通过“大家谈谈”来加深等边三角形是特 殊的等腰三角形的认
识。

在这五节内容的分析中,我们不难看出,本章是将观察、操 作等实践活动以及思考与
交流贯穿于整个教学活动过程中。这种“观察操作——合情猜想——进行验证” 的学习模
式,既有利于学生理解与掌握知识,又有利于学生学习能力的提高。

学情分析

1
学生在已学习了线段、角的基础上,学习轴对称的有关知识应 该较为容易判别轴对
称图形。

2
学生在大量的实例和探究活动过程中 ,
通过与他人合作交流,
能够发展合情推理,
进一步学习有条理的思考与表达,逐步学 会推理与论证。

3
由于学生差异的不同,在活动过程中会存在个别同学不能很 快接受的现象。可能
会出现被动学习的状态。


教学目标

1
通过生活中的具体实例认识轴对称;探索线段、角等简单图形的轴对称性;了解
线段垂直平分线的特征。

2
探索轴对称的基本性质,能够按要求画出简单平面图 形经过一次(或二次)轴对
称的图形。

3
能利用轴对称进行图案设计,体验轴对称在现实生活中的广泛应用
.
4
了解等腰三角形的概念,探索并掌握等腰三角形的性质和一个三角形是等腰三角
形的条件。

5
了解等边三角形的概念并探索其性质;利用等边三角形的性质探索在直角三角形
中,如果一个锐角等于
30
度,那它所对的直角边等于斜边的一半。


模块教学整体构思



树立教学整体观,让每一个教学点都表现出系统张力。


3
系统 论认为有结构的整体大于部分之和。树立教学整体观对教学活动的简洁高效具有
十分重要的现实意义。所 以理解教材,要纵横联系,领会意图,把握目标;处理教材,要
整体入手,
兼顾局部,
为生成而预设,
让每一课的教学设计成为本章教学构成中的一个点。
这个点在结构中既承前又启 后,与系统中其他点的组合发挥出超越自身强大的整体力量。



教材在本章内容的设计上突出的特点。

1
立足学生已有经验,从生活的角度研究轴对称,是本章基本的出发点。

2
在呈现发式上,一方面为学生提供了生动有趣的现实情境,另一方面注重观察、折
纸、剪纸、简单图案设 计等操作性活动,来丰富学生对轴对称的体验和理解。

3
本章内容定位于对生活中 轴对称现象的分析以及简单图形的对称性的探索,
这既不
同于“变换几何”中的轴对称变换,也 不是简单的轴对称现象欣赏。这里,既注重从现实
出发,又注重向理性认识“飞跃”
;既注重学 生数学活动经验的形成和积累,又注重数学
思考的展开和培养。

4
等腰三 角形这部分内容设计了较多的动手操作和直观感知的活动,
通过折纸、
观察、
归纳等方 法去探究和发现等腰三角形的有关性质。与此同时,采用适当的方式,进行数学
说理渗透。



落实数学教学本体目标

1

“知识与技能”方面

要求学生“通过具体实例认识轴对称,探 索它的基本性质”
“能按要求作出简单图形
经过一次或两次轴对称后的图形”
“利用轴 对称进行图案设计”
“认识和欣赏轴对称在现实
生活中的应用”
“探索基本图形的轴对 称的性质及其相关性质”本章通过“一起探究”
“大
家谈谈”充分体现了“经历”这个过程性目 标。通过观察、操作、想象、简单说理等多种
方式,发展学生的空间观念,借助图形的直观探索轴对称的 基本性质,以及线段、角等基
本图形的性质,并能利用图形变换设计、欣赏图案。

2

“数学思考”方面

本章努力使学生感受轴对称有着丰富的实际 背景,教材通过“观察与思考”
“一起探
索”
“大家谈谈”
“做一做”等丰富 的实践活动,不断让学生积累经验,形成新的发现,凸
现出动手操作与数学思考相辅相成,在学习的开始 阶段,先用动手操作来帮助学生认识图
形、探索性质;然后,过度到用来验证学生对图形的空间想象,因 此,学习之初,鼓励学
生先动手、后思考、再动手,让学生体会到不是为了操作而操作,要思考“为什么 这样操
作”
“还可以怎样试一试”将学生充分的实践和实践中的思考与交流有机的结合起来,不
断使学习深刻化。作为思考的延伸,还要求学生能将自己头脑中的印象表现出来,即能根

4
据条件画出图形,实际上还是将空间的观念从感知不断发展为一种实践的能力。

3

“解决问题”方面

本章要求学生了解一些基本图形的轴对称性 出发,这实际上为理解这些基本图形提供
了一个新的角度。进而也为探索这些图形的性质提供了一个新的 工具。例如,对于等腰三
角形,学生可以通过操作、思考等手段发现其对称性,这种对称性将启发学生将 等腰三角
形对折起来,由此,进一步探索出它的底角之间的大小关系,探索出顶角的平分线,底边
上的高、底边上的中线之间的关系。这种对称图形及其性质的探索手段,为学生积累了丰
富的图形经验 ,也为将来对这些性质的证明奠定了感性基础。改变了利用三角形全等等研
究图形性质的单一方式,初步 感受在具体问题中不同的表达方式之间的差异,了解这些不
同方法的形成,主要源于对问题的认识角度不 同,从而形成解决问题的一些基本策略,体
会解决问题的多样性,发展实践能力和创新能力精神。

4

“情感态度”方面

这一目标关系到数学课堂中素质教育的 认识,本章依托对图形的操作。通过“观察与
思考”
“一起探索”
“做一做”等活动, 引导学生积极参与数学活动,激发学生的好奇心与
求知欲。通过有“阶梯”的问题串,使每一个学生都能 够在活动中既有成功的体验,也有
面对挑战和经历,从而锻炼克服困难的意志,建立学习本章的自信心。 本章通过“观察、
操作——合情猜想——进行验证”这一学习活动基本模式,使学生形成实事求是的态度 的
习惯,也通过“大家谈谈”的栏目,培养了学生敢于发展自己的看法,理解他人看法的意
义, 从而学会与他人交

流的能力。


模块备课教学思考


多年来,老师备课总习惯把一节节具体的内容作为研究的对象,如《
15.1
生活中的轴
对称》
,认识轴对称图形。

15.2
简单的轴对称图形》线段、角的轴对称性质。

15.3
轴对
称的性质》

认识轴对称的性质。

15.4
利用轴对称设计图案》
利用轴对称设计图案。

15.5
等腰三角 形》轴对称的应用。应该说从局部来讲,这样的想法并不错,但这种备课因为没
有将视野放宽,将课文纳 入单元系统,纳入学生的整个人生发展组织中,教学目标显得狭
隘,教学过程也显得异常繁琐。当我们换 一种思考方式,立足于单元整体,将视线向两头
延伸,能够很清楚的分辨出他们之间的联系,一个个教学 训练点在整合找到位置。





我们在模块备课教学中 不难发现,本章的知识都是通过“观察、思考——一起探究—
—大家谈谈——做一做”这样一个过程呈现 的,每一节的内容都是如此,并且更加关注学
生的亲身体验。为了调动学生的积极性、参与性,每一节都 设计了学生操作、合作交流,

5
这些活动,让学生从中发现规律,归纳概括。





生活中的轴对称

教学目标:

1
、知识与技能



了解轴对称图形的定义,会找轴对称图形的对称轴。



理解轴对称图形和轴对称的联系与区别。



通过丰富的生活实例,认识轴对称现象,能识别简单的轴对称图形及其对称轴。

2
、过程与方法

①借助现实生活中大量存在的轴对称现象,去观察、分析、 探索轴对称现象的共同特征,
并作归纳总结。

②会欣赏现实生
活中的轴对称图形的美。进一步体会轴对称的应用价值和文化价值。

3
、情感、态度与价值观

通过学习本节,进一步丰富学生的数学活动经验, 在学习中有意识地培养学生积极性
的情感态度,提高学生观察、分析、归纳、概括等能力,陶冶学生的审 美情操。

教学活动设计
:
一、

问题情境



师:在现实生活中,和谐、美丽的对称形式随处可 见,让我们一起来认识这一奇妙的数
学现象吧!下面我们观察一组图片
.(
根据课本< br>48
页的图
15-1
制作的挂图
)
二、

大家谈谈:


师:你想怎样说明以上图形的这种对称性
?

生:对折后能重合。


师:怎样对折?


生:沿某一条直线对折后,直线两旁的部分能够完全重合。


师:很好!从而我们就可以得出:一般地,如果一个图形沿某条直线对折后,直线两旁
的部分能够完全 重合。那么这个图形就叫做
轴对称图形
。这条直线叫做
对称轴。


6

师:谁能说说生活中是轴对称图形的实物?它们各有几条对称轴?


生:国旗上的五角星,它有五条对称轴。


生:电风扇的扇叶,它有三条对称轴。


生:有些树的叶子,它有一条对称轴。


……

……


师:很好!那么在我们学过的汉字中,有哪些是轴对称图形?


生:中、口、日、目、由、申、甲。


生:普、善、喜。


……

……

三、

做一做:

1


2


请你画出可本图
15-1
中各个图形的对称轴。

剪出一个葫芦形状的图形和一个“双喜”字。

四、

观察与思考< br>:
(出示根据课本
49
页图
15-2
制作的挂图)




:
每幅图中有几个图形?这些图形有什么共同特点?



生:每幅图中都有两个图形,沿着一条直线对折后,这两个图形完全重合。



师:真不错!从而得出:这样的两个图形
成轴对称
。这条直线叫做
对称轴
,两个图形种
的对应点叫做
对称点。

五、

一起探究:



师:轴对称与轴对称图形有什么异同?(小组讨论交流)

生:都是对折后重合。



生:都是沿某一直线对折。



生:轴对称是两个图形,轴对称图形是一个图形。



生:轴对称是一个图形与另一个图形重合,二轴对称图形是一个图形的两部分重合。



师:很好!
(教师做归纳)

六、

小结:














































这节课你有什么收获?
(学生发言,教师总结)

七、

课后拓展:




在建筑中,有哪些利用轴对设计的美丽装饰?

八、

布置作业:




课本第
49
页习题第
1

.


7












15.2

简单的轴对称图形

教学目标




1
、知识与技能



知道线段和角是轴对称图形。



了解线段垂直平分线的意义。



掌握线段平分线的性质及角的平分线的性质。



会运用线段平分线、交平分线的性质进行有关计算和证明。

2
、过程与方法




借助轴对称图形的定义, 通过学生实际动手操作,对折在纸上画的线段、角,理解
线段垂直平分线或角平分线所具有的性质


3
、情感态度与价值观



通过学习本节,进一步体会轴对称图形来源于生活,同时又服务于生活。



通过观察、操作、探究、讨论、交流,培养学生合作意识和勇于探索的精神。

教学活动设计:

一、问题情境:


:
线段和角都是轴对称图形,他们的对称轴具有什么性质呢?


8
二、做一做:



按下面的步骤在一张半透明的纸上画出经过线段中点的一条垂直线。

1
、一条线段
AB.
2
、找出线段
AB
的中点
O.
3
、过点
O
画出线段
AB
的垂线
CD.
师:像直线这样,垂直并且平分一条线段的直线叫做这条线段的垂直平分线。
(简称中
垂线)< br>
三、观察与思考:



师:如果沿线段
AB的垂直平分线
CD
将纸对折,那么线段
AB
被直线
CD
分成的两部
分完全重合吗?这说明什么?



生:能完全重合。这说明线段是轴对称图形,线段的垂直平分线是它的对称轴。



师:在线段
AB
的垂直平分线
CD
上任取一点
P ,
连结
PA

PB
,再沿
CD
将纸对折,那么PA

PB
重合吗
?
这说明什么
?


生:重合。这说明
PA=PB.


师:由此得出:
线段垂直平分线上的点到这条线段两个端点的距离相等。

四、一起探究:

1
、不借助测量工具,你能画出∠
AOB
的平分线吗?

2
、∠
AOB
是轴对称图形吗?如果是,请说出它的对称轴。
3
、在∠
AOB
的平分线上任取一点,则该点到∠
AOB
两边< br>OA

OB
的距离相等吗?与
同学一起交流。



(小组讨论、探究、相互交流)

生:我用折叠的方法,画出∠
A OB
的平分线
.

AOB
是轴对称图形,折痕(也就是角平
分线)是对称轴。

生:我在角平分线上取一点
P
,分别作
PC
OA

C

PD

OB

D
。通过对折,看出
PC

PD
重合。也就是说
PC=PD


师:谁能用一句话说明上面的现象?

生:
角平分线上的点到这个角的两边的距离相等


师:很好!这就是角平分线的性质。

五、巩固练习:


9



如图,在
Rt

ABC
中,∠
C=90
°
.AD
是△
ABC
的角平分线,
DE

AB

E
,请说明
DE

DC< br>相等。
























B


E










































































D


























六、小结:














C

























A




这节课你有什么收获

?(学生发言,教师总结归纳)

七、布置作业






如图,在△
ABC
中,
AB=AC.

D

AB
的中点

,且
DE

A B,

AC
于点
E
。已知△
BCE
的周长为
8
,且
AC

BC=2
。求
AB
的长















































A





























































D











E



































B














C








15.3
轴对称的性质

教学目标:

1
、探索并理解轴对称的基本性质
.
2
、掌握轴对称性质的简单应用
.
创设情境:

师:我们在前面学习了什么是轴对称,你能举出几个生活中成轴对称的例子吗?


10
生:
(思考、回答)两扇窗子、两扇大门、两只眼睛、两只耳朵等。

一起探究:

片段一:

师:
每位同学拿出一张长方形纸片 沿中间对折,
在折叠的纸上用剪刀剪去一个三角形,
然后打开铺平。此时,你发现了什么?
生:
(观察、思考)这两个剪去的三角形“孔”关于折痕成轴对称。

师:请你们在纸上标出△
ABC
的顶点
A

B

C
,对称轴
l
,以及△
ABC
关于
l
成轴
对称的△
A

B

C
′的顶点
A
′、
B
′、
C
′。


ABC
的各边、各角与△
A

B

C
′的哪些边、角相对应?< br>
生:
(观察、思考、做答)

师:△
ABC
与△< br>A

B

C
′有什么关系?

生:全等

师:这两个三角形的各对应边、对应角有什么关系?

生:对应边相等,对应角相等。

师:你能概括一下我们刚才探究的结果吗?

生:
(同位讨论)
如果两个图形关于一条直线成轴对称,那么对应线段相等,对应角< br>相等。

片段二:

师:请同学们把
AA
′、
BB
′、
CC
′连结起来,描出对称轴
l,
标出
AA′、
BB
′、
CC

与直线
l
的交点
D

E

F


北行同 学量一量
AD

DA
′的长度,
中行同学量一量
CE

EC
′的长度,
南行同学量一

BF

FB< br>′的长度,你发现了什么?

生:
AD=DA
′,
CE=EC
′,
BF=FB
′。

师:你能用语言概括出来吗?

生:
成轴对称的图形对应点连结的线段被对称轴平分。

师:北行同学量一量 ∠
ADF
的度数,中行同学量一量∠
CEF
的度数,南行同学量一量


BFD
的度数。你们发现了什么?

生:它们都等于
90


师:直线
l

AA
′、
BB
′、
CC
′有怎样的位置关系?

生 :
线段
AA
′、
BB
′、
CC
′被直线
l
垂直平分。


11
师:通过我们上边的探讨,你能概括出成轴对称的两个图形有那些性质吗?

生:(在师的引导下回答)
如果两个图形关于某一条直线对称,那么,对应线段相等,
对应角相 等,对应点所连的线段被对称轴垂直平分。

一起做做:

1
、如图,在网格纸上,分别画出所给图形关于直线
l
的对称图形。



(引导学生完成,使学生明白画一个图形的对称图形关键是找到图形各顶点的对称 点,然
后,把找到的对称点依次连接起来。


2
、图中,画出点
A
关于直线
l
的对称点。


(引导学生画图)
,画图过程如下:

⑴、过点
A
画直线
l
的垂线,垂足为
O


⑵、延长
AO

A
,使
OA

=OA

A
′点就是我们要求做的点 。

(通过此题的练习,使学生掌握画已知点对称点的画法)



如图,以
AE
为对称轴,画出该图的另一部分。


12

酸菜鱼的做法和步骤图-


酸菜鱼的做法和步骤图-


酸菜鱼的做法和步骤图-


酸菜鱼的做法和步骤图-


酸菜鱼的做法和步骤图-


酸菜鱼的做法和步骤图-


酸菜鱼的做法和步骤图-


酸菜鱼的做法和步骤图-