八年级数学上册知识点总结
巡山小妖精
656次浏览
2021年01月24日 21:31
最佳经验
本文由作者推荐
我看李白-商君书
八年级数学上册知识点总结
第十一章三角形
知识框架
知识概念
1
.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
2
.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边
3
.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形
的高 .
(钝角三角形三条高的交点在三角形外,
直角三角形的三条高的交点在三角形上,
锐角三角
形的三条高在三角形内)
4
.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.
(三条中线的交点叫重心)
5
.角平分线:三角形的一个内角的平分线与这 个角的对边相交,这个角的顶点和交点之间
的线段
叫做三角形的角平分线.
(三角形三条角平分线的交点到三边距离相等)
6
.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.
(例如自行车的三角形车架利用了三角形具有稳定性)
7
.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.
8
.多边形的内角:多边形相邻两边组成的角叫做它的内角
9
.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角
10
.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线
11
.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.
< br>12
.
平面镶嵌:
用用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖
平面
13
.公式与性质
(
1
)三角形的内角和:三角形的内角和为
180°
(
2
)三角形外角的性质
性质
1
:三角形的一个外角等于和它不相邻的两个内角的和.
性质
2
:三角形的一个外角大于任何一个和它不相邻的内角
(3
)多边形内角和公式:
nm
边形的内角和等于(
un
-
2
)
·
180°
(
4
)多边形的外角和:多边形的外角和为
360°
(< br>5
)多边形对角线的条数:
①
从
n
边形的一个顶点出发可以引 (
m
-
3
)条对角
线,把多边形分成(
n
-
2
)个三角形.
②n
边形共有(
n
-
3
)条对角线.
2
第十二章全等三角形
知识框架
知识概念
1
.基本定义
(
1
)全等形:能够完全重合的两个图形叫做全等形.
2
)全等三角形:能够完全重合的两个三角形叫做全等三角形.
(
3
)对应顶点:全等三角形中互相重合的顶点叫做对应顶点.
(
4
)对应边:全等三角角形中互相重合的边叫做对应边.
(
5
)对应角:全等三角形中互相重合的角叫做对应角
2
.基本性质:
(
1
)三角形的稳定性:三角形三边的长 度确定了,这个三角形的形状、大小就全确定,这
个性质
叫做三角形的稳定性.
2
)全等三角形的性质:全等三角形的对应边相等,对应角相等.
3
.全等三角形的判定定理:
(
1
)边边边(
S SS
)
:三边对应相等的两个三角形全等.
(
2
)边角边 边(
SAS
)
:两边和它们们的夹角对应相等的两个三角形全等.
(
3
)角边角(
ASA
)
:两角和它们的夹边对应相等的两个三角形 全等
文档
角角边(
AAS
)
:两角和其中一个 角的对边对应相等的两个三角形全等.
(
5
)斜边、直角边边(
H L
)
:斜边和一条直角边对应相等的两个直角三角形
全等.
4
.角平分线:
(
1
)画法
(
2
)性质定理:角平分线上的点到角的两边的距离相等.
3
)性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上
(三角形三条角平分线的交点到三边距离相等)
5
.证明的基本方法:
(
1
)明确命题中的已知和求证.
(包括隐含条件,如公共边、公共角、对顶
角、角平分线、中线、高、等腰三角形等所隐含的边角关系)
(
2
)根据题意,画出图形,并用数字符号表示已知和求证.
(
3
)经过分析,找出由已知推出求证的途径,写出证明过程.
第十三章轴对称
知识框架
二、知识概念
1
.基本概念
(
1
)轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相
重合,这个图形就叫做轴对称图形.
(
2
)两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另
个图形重合,那么就说这两个图形关于这条直线对称
(
3
)线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这
条线段的垂直平分线
(
4
)等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫
做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做
底角
(
5
)等边三角形:三条边都相等的三角形叫做等边三角形.
2
.基本性质:
(
1
)对称的性质