初中数学知识点总结(最新最全)
萌到你眼炸
931次浏览
2021年01月28日 05:06
最佳经验
本文由作者推荐
工商银行实习报告-关于感恩节
初中数学知识点总结
一、基本知识
㈠、数与代数
A
、数与式:
1
、有理数
有理数:①整数→正整数
/0/
负整数
②分数→正分数
/
负分数
数轴:①画一条水平直线,在直线上取一 点表示
0
(原点)
,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就 得到数轴。②任何一个有
理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称 其中一个数为另外一个数的相反数,也称这两个数互为相反数。在
数轴上,表示互为相反数的两个点,位 于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于
0,负数
小于
0
,正数大于负数。
绝对值:①在数轴上,一个数 所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、
0
的绝对值是
0
。
两个负数比较大小,绝对值大的反而小。
有理数的运算:
加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝 对值相等时和为
0
;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值
减去 较小的绝对值。③一个数与
0
相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号 得负,绝对值相乘。②任何数与
0
相乘得
0
。③乘积为
1
的 两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。②
0
不能作除数。
12-1
乘方:求
N
个相同因数
A
的积的运算 叫做乘方,乘方的结果叫幂,
A
叫底数,
N
叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2
、实数
无理数:无限不循环小数叫无理数
平方根:① 如果一个正数
X
的平方等于
A
,那么这个正数
X
就叫做A
的算术平方根。②如果一个数
X
的平方等于
A
,那么这个数< br>X
就叫做
A
的平方根。
③一个正数有
2
个平方根/0
的平方根为
0/
负数没有平方根。④求一个数
A
的平方根运 算,叫做开平方,其中
A
叫做被开方数。
立方根:①如果一个数
X
的立方等于
A
,那么这个数
X
就叫做
A
的立方根。 ②正数的立方根是正数、
0
的立方根是
0
、负数的立方根是负数。③求一个数
A
的立方根的运算叫开立方,其中
A
叫做被开方数。
实数 :①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝 对值的意义完全一样。③每一个
实数都可以在数轴上的一个点来表示。
3
、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做 合并同类项。③在合并同类项时,我们把
同类项的系数相加,字母和字母的指数不变。
4
、整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的 和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项
式的次数。③ 一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:
AM+AN=A
(
M+N
)
(
AM
)
N=AMN
12-1
(
A/B
)
N=AN/BN
除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作 为积的因式。②单项式与多项式相乘,
就是根据分配律用单项式去乘多项式的每一项,
再把所得 的积相加。
③多项式与多项式相乘,
先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式
/
完全平方公式
整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字 母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单 项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式
A
除以整式
B
,如果除式
B
中含有分母,那么这个就是分式,对于任 何一个分式,分母不为
0
。②分式的分子与分母同乘以或除以同一个
不等于
0
的整式,分式的值不变。
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母的分式相加减,分 母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:① 分母中含有未知数的方程叫分式方程。②使方程的分母为
0
的解称为原方程的增根。
B
、方程与不等式
1
、方程与方程组
一元一次 方程:①在一个方程中,只含有一个未知数,并且未知数的指数是
1
,这样的方程叫一元一次方 程。②等式两边同时加上或减去或乘以或除以
(不为
0
)一个代数式,所得结果仍是等 式。
12-1
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为
1
。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是
1
的方程叫做二元一 次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法
/
加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为
2
的方程
1
)一元二次方程的二次函数的关系
大家已经学过二次函数(即抛物线)了 ,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实
一元二次方程也是二次函数的一个特殊情况,就是当
Y
的
0
的时候就构成了 一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是
二次函数中,图象与
X
轴的交点。也就是该方程的解了
2
)一元二次方程的解法
大家知道,二次函数有顶点式(
-b/2a,4ac-b
2
/4a
),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以
他也 有自己的一个解法,利用他可以求出所有的一元一次方程的解
(1
)配方法
利用配方,使方程变为完全平方公式,在用直接开平方法去求出解
(2)
分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次 方程的时候也一样,利用这点,把方程化为几个乘积的形式去解
(3)
公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根< br>X
1
={-b+
√
[b
-4ac)]}/2a
,X
2
={-b-
√
[b
-4ac)]}/2a
12-1
2
2
3
)解一元二次方程的步骤:
(
1
)配方法的步骤:
先把常数项移到方程的右边,再把二次项的 系数化为
1
,再同时加上
1
次项的系数的一半的平方,最后配成完全平方公式
(2)
分解因式法的步骤:
把方程右边化为
0
,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为 乘积的形式
(3)
公式法
就把一元二次方程的各系数分别代入, 这里二次项的系数为
a
,一次项的系数为
b
,常数项的系数为
c
4
)韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根 之和
=-b/a
,二根之积
=c/a
也可以表示为
x
1< br>+x
2
=-b/a,x
1
x
2
=c/a
。利 用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用
5
)一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”
,读作“
diao t a
”
,而△
=b
2
-4ac
,这里可以分为
3种情况:
I
当△
>0
时,一元二次方程有
2
个不相等的实数根;
II
当△
=0
时,一元二次方程有
2
个相同的实数根;
III
当△
<0
时,一元二次方程没有 实数根(在这里,学到高中就会知道,这里有
2
个虚数根)
2
、不等式与不等式组
不等式:①用符号〉
,
=
,
〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的 两边都乘以或者除以一
个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向 相反。
不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数 的不等式的所有解,组成这个不等式的解集。③求不等式解集的
过程叫做解不等式。
12-1
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最 高次数是
1
的不等式叫一元一次不等式。
一元一次不等式组:①关于同一个 未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。②一元一次不等式组中各个不等式的解集的 公
共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。
一元一次不等式的符号方向:
在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
在不等式中,如果加上同一个数(或加上一个正数)
,不等式符号不改向;例如:
A>B,A +C>B+C
在不等式中,如果减去同一个数(或加上一个负数)
,不等式符号不改向;例如 :
A>B
,
A-C>B-C
在不等式中,如果乘以同一个正数,不等号不改 向;例如:
A>B
,
A*C>B*C
(
C>0
)
在不等式中,如果乘以同一个负数,不等号改向;例如:
A>B
,
A*C(
C<0
)
如果不等式乘以
0
,那么不等号改为等号
所以在题目中,要求出乘 以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为
0,否则不等式不成立;
3
、函数
变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上 的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:①若两个变量
X,
Y
间的关系式可以表示成
Y=KX+B
(
B
为常数,
K
不等于
0
)的形式,则称
Y
是
X
的一次 函数。②当
B=0
时,称
Y
是
X
的正比
例函数。< br>
一次函数的图象:①把一个函数的自变量
X
与对应的因变量
Y
的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的
图形叫做该函 数的图象。②正比例函数
Y=KX
的图象是经过原点的一条直线。③在一次函数中,当
K
〈
0
,
B
〈
O
,则经
234
象 限;当
K
〈
0
,
B
〉
0
时,
则经
124
象限;当
K
〉
0
,
B
〈
0
时,则经
134
象限;当
K
〉
0
,
B〉
0
时,则经
123
象限。④当
K
〉
0
时,
Y
的值随
X
值的增大而增大,当
X
〈
0时,
Y
的值随
X
值的增大而减少。
12-1
㈡空间与图形
A
、图形的认识
1
、点,线,面
点,线,面:①图形是由点,线,面构成的。②面与面相交 得线,线与线相交得点。③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何 相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同, 侧面
的形状都是长方体。②
N
棱柱就是底面图形有
N
条边的棱柱。< br>
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、 扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。
2
、角
线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线 。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④
经过两点有且只有一条 直线。
比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点 之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是 这个角的顶点。②一度的
1/60
是一分,一分的
1/60
是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终 边和始边成一条直线时,所成的角叫做平角。
始边继续旋转,当他又和始边重合时,所成的角叫做周角。 ③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角
的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条 直线平行。③如果两条直线都与第
3
条直线平行,
那么这两条直线互相平行。
12-1
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂 直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直
线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定 是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在 画垂
直平分线的时候,确定了
2
点后(关于画法,后面会讲)一定要把线段穿出
2
点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段
2
端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的 ,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才
会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:
1
、对角线相等的菱形
2
、邻边相等的矩形
3
、相交线与平行线
角:①如果两个角的和是直角
,
那么 称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。②同角或等角的余角
/
补角相等。③对顶
角相等。④同位角相等
/
内错角相等
/
同旁内角 互补,两直线平行,反之亦然。
4
、三角形
12-1
三角形:
①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
②三 角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
③三角形三个内角的和等于< br>180
度。④三角形分锐角三角形
/
直角三角形
/
钝角三角形 。⑤直角三角形的两个锐角互余。⑥三角形中一个内角的角平
分线与他的对边相交,这个角的顶点与交点 之间的线段叫做三角形的角平分线。⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的
中 线。⑧三角形的三条角平分线交于一点,三条中线交于一点。⑨从三角形的一个顶点向他的对边所在的直线作垂线 ,顶点和垂足之间的线段叫做
三角形的高。⑩三角形的三条高所在的直线交于一点。
图形的全等:全等图形的形状和大小都相同。两个能够重合的图形叫全等图形。
全等三角形:①全等三角形的对应边
/
角相等。
②条件:
SSS
、
AAS
、
ASA
、
SAS
、
HL
。
勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。
5
、四边形
平行四边形的性质:①两组对边分别平行的四边形叫做平行四边 形。②平行四边形不相邻的两个顶点连成的线段叫他的对角线。③平行四边形的对边
/
对角相等 。④平行四边形的对角线互相平分。
平行四边形的判定条件:两条对角线互相平分的四边形、 一组对边平行且相等的四边形、两组对边分别相等的四边形
/
定义。
菱形: ①一组邻边相等的平行四边形是菱形。②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对 角。③判定条件:定义
/
对角
线互相垂直的平行四边形
/
四条边都相 等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。②矩形的对角线相 等,四个角都是直角。③对角线相等的平行四边形是矩形。④正方形具
有平行四边形,矩形,菱形的一切 性质。⑤一组邻边相等的矩形是正方形。
梯形:①一组对边平行而另一组对边不平行的四边形 叫梯形。②两条腰相等的梯形叫等腰梯形。③一条腰和底垂直的梯形叫做直角梯形。④等腰梯形同
一底上 的两个内角相等,对角线星等,反之亦然。
多边形:①
N
边形的内角和等于 (
N-2
)
180
度。②多边心内角的一边与另一边的反向延长线所组成的角 叫做这个多边形的外角,在每个顶点处取这个多
12-1
边形的一个外角,他们的和叫做这个多边形的内角和(都等于
360
度)
平面图形的密铺:三角形,四边形和正六边形可以密铺。
中心对称图形:①在平面内 ,一个图形绕某个点旋转
180
度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称 图形,这个点叫做他的对称中
心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。< br>
B
、图形与变换:
1
、图形的轴对称
轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直 线叫做对称轴。
轴对称图形:
①角的平分线上的点到这个角的两边的距离相等。②线段垂直平分线上的点到这条线段两个端点的距离相等。
③等腰三角形的
“三线合一”< br>。
轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段
/
对应角相等。
2
、图形的平移和旋转
平移:①在平面内,将一个 图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。②经过平移,对应点所连的线段平行且相等,对应 线段平行
且相等,对应角相等。
旋转:①在平面内,将一个图形绕一个定点沿某个方 向转动一个角度,这样的图形运动叫做旋转。②经过旋转,图形商店每一个点都绕旋转中心沿相同
方向转 动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
3
、图形的相似
比:①
A/B=C/D
,那么
AD=BC
,反之亦然。②
A/B=C/D
,那么
A
土
B /B=C
土
D/D
。③
A/B=C/D=
。
。
。< br>=M/N
,那么
A+C+
…
+M/B+D+
…
N=A /B
。
黄金分割:点
C
把线段
AB
分成两条线段
AC
与
BC
,如果
AC/AB=BC/AC
,那么称线段< br>AB
被点
C
黄金分割,点
C
叫做线段
AB
的 黄金分割点,
AC
与
AB
的比
叫做黄金比(根号
5-1/2
)
。
相似:①各角对应相等,各边对应成比例的两个多边形叫做相似多边形 。②相似多边形对应边的比叫做相似比。
相似三角形:①三角对应相等,三边对应成比例的两 个三角形叫做相似三角形。②条件:
AAA
、
SSS
、
SAS
。
12-1
相似多边形的性质:①相似三角形对应高,对应角平分线 ,对应中线的比都等于相似比。②相似多边形的周长比等于相似比,
面积比等于相似比的平方。
图形的放大与缩小:①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么 这样的两个图形叫做位似图形,这个点叫做位
似中心,这时的相似比又称为位似比。②位似图形上任意一 对对应点到位似中心的距离之比等于位似比。
C
、图形的坐标
平 面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做
X< br>轴或横轴,铅直的数轴叫做
Y
轴或纵轴,
X
轴
与
Y< br>轴统称坐标轴,他们的公共原点
O
称为直角坐标系的原点。他们分
4
个 象限。
XA
,
YB
记作(
A
,
B
)
。
D
、证明
定义与命题:①对名称与术语的含义加以描述,作 出明确的规定,也就是给出他们的定义。②对事情进行判断的句子叫做命题(分真命题与假命题)
。③每个命题是由条件和结论两部分组成。④要说明一个命题是假命题,通常举出一个离子,使之具备命题的条 件,而不具有命题的结论,这种例子
叫做反例。
公理:①公认的真命题叫做公理。② 其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。③同位角相等,两直线平行,反之亦然 ;
SAS
、
ASA
、
SSS
,反之亦然;同旁内角互补,两 直线平行,反之亦然;内错角相等,两直线平行,反之亦然;三角形三个内角的和等于
180
度 ;三
角形的一个外交等于和他不相邻的两个内角的和;三角心的一个外角大于任何一个和他不相邻的内角 。④由一个公理或定理直接推出的定理,叫做
这个公理或定理的推论。
㈢统计与概率
1
、统计
科学记数法:一个大于
10
的数可以表示成
A*10N
的形式,其中
1
小于等于
A
小于
10
,
N
是正整数。
扇形统计图:①用圆表 示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图 叫做扇形统计
图。②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360
度的比。
各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体 数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分
12-1