排列组合常见21种解题方法

萌到你眼炸
572次浏览
2021年01月28日 05:59
最佳经验
本文由作者推荐

快乐暑假作文-创业项目排行

2021年1月28日发(作者:迥异)
排列组合难题二十一种方法


排列组合问题联系实际生动有趣, 但题型多样,思路灵活,因此解决排
列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排 列与组
合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。


教学目标

1.
进一步理解和应用分步计数原理和分类计数原理。

2.
掌握解决排列组合问题的常用策略
;
能运用解题策略解决简单的综合应用
题。提高学生解决问题分析问题的能力

3.
学会应用数学思想和方法解决排列组合问题
.
复习巩固

1.
分类计数原理
(
加法原理
)
完成一件事,有
n
类办法,在第
1
类办法中有
m
1
种不同的方法,在第2

办法中有
m
2
种不同的方法,…,在第
n
类办法中有
m
n
种不同的方法,那么
完成这件事共有:

N

m
1

m
2


m
n

种不同的方法.

2.
分步计数原理(乘法原理)
完成一件事,需要分成
n
个步骤,做第
1
步有
m
1种不同的方法,做第
2


m
2
种不同的方法,…,做 第
n
步有
m
n
种不同的方法,那么完成这件事共
有:

N

m
1

m
2


m
n

种不同的方法.

3.
分类计数原理分步计数原理区别


分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完
成整个事件.

解决排列组合综合性问题的一般过程如下
:

1.
认真审题弄清要做什么事

2.
怎样做才能完成所要做的事,
即采取分步还是分类
,
或是分步与分类同时
进行
,
确 定分多少步及多少类。

3.
确定每一步或每一类是排列问题
(
有序
)
还是组合
(
无序
)
问题
,
元素总数是< br>多少及取出多少个元素
.
4.
解决排列组合综合性问题,往往类与步交叉,因 此必须掌握一些常用的解
题策略


.
特殊元素和特殊位置优先策略


1.
0,1,2,3,4,5
可以组成多少个没有重复数字五位奇数
.

:
由于末位和首位有特殊要求
,
应该优先安排
,
以免不合要求的元素占 了这

1
两个位置
.
1

先排末位共有
C
3

1

然后排首位共有
C
4


最后排其它位置共有
A
4
3

1
1
31
3
1
C
3
A
4

288


由分步计数原理得
C
4
C
4
A
4< br>C
3


位置分析法和元素分析法是解决排列组合问题最常用也是最基 本的方法
,
若以元素分析为主
,


先安排特殊元素
,
再处理其它元素
.
若以位置分析为主
,
需先满足特殊位置的要求
,
再处理其它位

置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件


练习题
:7
种不同的花种在排成一列的花盆里
,
若两种葵花不种在中间,也 不
种在两端的花盆里,问有多少不同的种法?


.
相邻元素捆绑策略


2. 7
人站成一排
,
其中甲乙相邻且丙丁相邻
,
共有多少种不同的排法
.
解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同 时丙丁也看成一
个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计 数原理可得共有
A
5
5
A
2
2
A
2
2

480
种不同的排法







要求某几个元素必须排在一起的问题
,
可以用捆绑法来解决问题
.
即将需要相邻的元素合并

为 一个元素
,
再与其它元素一起作排列
,
同时要注意合并元素内部也必须排列< br>.

练习题
:
某人射击
8
枪,
命中
4
枪,
4
枪命中恰好有
3
枪连在一起的情形的不
同种数为
20


.
不相邻问题插空策略

3.
一个晚会的节目有
4
个舞蹈
,2
个相声
,3
个独唱
,
舞蹈节目不能连续出场
,
则节目的出场顺序有多少种?


:
分两步进行第一步排
2
个相声和
3
个独唱共有
A
5
5
种,第二步将
4
舞蹈插
4
入第一步 排好的
6
个元素中间包含首尾两个空位共有种
A
6
不同的方法
,
4
由分步计数原理
,
节目的不同顺序共有
A
5
5
A
6




元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两

练习 题:某班新年联欢会原定的
5
个节目已排成节目单,开演前又增加了两
个新节目
.
如果将这两个新节目插入原节目单中,且两个新节目不相邻,
那么不同插法的种数为
30

.
定序问题倍缩空位插入策略


4.7< br>人排队
,
其中甲乙丙
3
人顺序一定共有多少不同的排法

:(
倍缩法
)
对于某几个元素顺序一定的排列问题
,
可先把这几个元素与其

2

他元素一起进行排列
,
然后 用总排列数除以这几个元素之间的
3
全排列数
,
则共有不同排法种数是:A
7
7
/
A
3

4

(
空位法
)
设想有
7
把椅子让除甲乙丙以外的四人就坐共有
A
7
种方法,其
4
余的三个位置甲乙丙共有
1
种坐法,则共有
A
7
种方法。


思考
:
可以先让甲乙丙就坐吗
?

(插入法
)< br>先排甲乙丙三个人
,
共有
1
种排法
,
再把其余
4
四人依次插入共


方法


定序问题可以用倍缩法,还可转化为占位插



练习题
: 10
人身高各不相等
,
排成前后排,每排
5

,
要 求从左至右身高逐渐
增加,共有多少排法?

5

C
10


.
重排问题求幂策略

5.

6
名实习生分配到
7
个车间实习
,
共有 多少种不同的分法


:
完成此事共分六步
:
把第一名实习生分配到车间有
7
种分法
.
把第二名
实习生分配到车间也有
7
种分依此类推< br>,
由分步计数原理共有
7
6
种不同的
排法


允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素

的位置,一般地
n
不同的元素没有限制地安排在
m
个位置上的排列数 为
m
n




练习题:

1


某班新年联欢会原定的
5
个节目已排成节目单,开演前又增加了两个
新节目
.
如果将这两个节目插入原节目单中,那么不同插法的 种数为
42
2.

8
层大楼一楼电梯上来
8
名乘客人
,
他们到各自的一层下电梯
,
下电梯
的方法
7< br>8


.
环排问题线排策略


6. 8
人围桌而坐
,
共有多少种坐法
?
解:围桌而坐与坐成一排的不同 点在于,坐成圆形没有首尾之分,所以固定
一人
A
4
!种排法即
7< br>!

4
并从此位置把圆形展成直线其余
7
人共有(
8-1

C
D
E
F
G
H
B
AA
B
C
D
E
F
G
H
A






一般地
,n
个不同元素作圆形 排列
,
共有
(n-1)!
种排法
.
如果从
n
个不同元素中取出
m
个元素作圆
形排列共有
1
m
A
n

n
3

练习题:
6
颗颜色不同的钻石,可穿成几种钻石圈
120

.
多排问题直排策略


7.8
人排成前后两排
,
每排
4

,
其中甲乙在前排
,
丙在后排
,
共有多少排法


:8
人排前后两排
,
相当于
8
人坐
8
把椅子
,
可以把椅子排成一排
.< br>个特殊
1
元素有
A
2

,
再排后
4
个位置上的特殊元素丙有
A
4
4

,
其余的
5
人在
5
2
1
5
A
A
A
个位置 上任意排列有
A
5

,
则共有
4
4
5

5
前 排
后 排

一般地
,
元素分成多排的排列问题
,
可归结为一排考虑
,
再分段研


练习题:有两排座位,前排
11
个座位,后排
12
个座位,现安排< br>2
人就座规
定前排中间的
3
个座位不能坐,并且这
2
人不左右相邻,那么不同
排法的种数是
346

.
排列组合混合问题先选后排策略


8.
有< br>5
个不同的小球
,
装入
4
个不同的盒内
,
每 盒至少装一个球
,
共有多少
不同的装法
.

:
第 一步从
5
个球中选出
2
个组成复合元共有
C
5
2< br>种方法
.
再把
4
个元素
(
包含一个复合元素
)
装入
4
个不同的盒内有
A
4
根据分步计数
4种方法,
原理装球的方法共有
C
5
2
A
4
4< br>

解决排列组合混合问题
,
先选后排是最基本的指导思想
.
此法与相邻元素捆绑策略相似吗
?

练习题:一个班有
6
名战士
,
其中正副班长各
1
人现从中选
4
人完成四种不同的任务
,
每人完成一种任务
,
且正副班长有且只有
1
人参加
,
则不同
的选法有
192



.
小集团问题先整体后局部策略


9.
1,2,3,4,5
组成没有重复数字的五位数其中恰有两个偶数夹
1,
5在两个奇数之间
,
这样的五位数有多少个?

解:
把1
,

,

,
4当作一个小集团与3排队共有
A
2再排小集团
2
种排法,
2
2
2
2
内部共有A
2
2
A
2
种排法,由分步计数原理共有
A
2
A
2
A
2
种排法
.

1524

小集团排列问题中,先整体后局部,再结合其它策略进行处理。


练习题:


4

.
计划展出
10幅不同的画
,
其中
1
幅水彩画
,
4幅油画
,< br>5幅国画
,
排成一
行陈列
,
要求同一


品种的必须连在一起,并且水彩画不在两端,
5
4
那么共有陈列方式的种数为
A
2
2
A
5
A
4

5
5
2. 5
男生和5女生站成一排照像
,
男生相邻
,
女生也相邻的排法有
A
2
2
A
5
A
5



.
元素相同问题隔板策略


10 .

10
个运动员名额,
分给
7
个班,
每班至少一 个
,
有多少种分配方案?


解:因为
10
个名额没有差别,把它们排成一排。相邻名额之间形成9个
空隙。在9个空档中选6个位置插个隔板,可 把名额分成7份,对
应地分给7个班级,每一种插板方法对应一种分法共有
C
9
6
种分法。


















n
个相同的元素分成
m
份(
n

m
为正整 数)
,
每份至少一个元素
,
可以用
m-1
块隔板,

m

1
插入
n
个元素排成一排的
n-1
个 空隙中,所有分法数为
C
n

1



练习题:

1


10
个相同的球装
5< br>个盒中
,
每盒至少一有多少装法?

C
9
4

3
2 .
x

y

z

w

100
求这个方程组的自然数解的组数

C
103

十一
.
正难则反总体淘汰策略


11.

0,1,2,3,4,5,6,7,8,9
这十个数字中 取出三个数,使其和为不小于
10
的偶数
,
不同的


取法有多少种?

解:这问题中如果直接求不小于
10
的偶数很困难
,
可用总体淘汰法。这
十个数字中有
5
个偶数
5
个 奇数
,
所取的三个数含有
3
个偶数的取法有
C
5
3
,
1
2
1
2
3
C
5
,
和 为偶数的取法共有
C
5
C
5

C
5
只含有
1
个偶数的取法有
C
5
。再淘汰和
1
2
3
C
5

C
5

9

小于
10
的偶数共
9
种,符合条件的取法共有
C
5


有些排列组合问题
,
正面直接考虑比较复杂
,
而它的反面往往比较简 捷
,
可以先求出

它的反面
,
再从整体中淘汰
.


练习题:我们班里有
43
位同学
,
从中任抽< br>5

,
正、副班长、团支部书记至
少有一人在内的

抽法有多少种
?
十二
.
平均分组问题除法策略


12. 6
本不同的书平均分成
3

,
每堆2
本共有多少分法?


5

快乐暑假作文-创业项目排行


快乐暑假作文-创业项目排行


快乐暑假作文-创业项目排行


快乐暑假作文-创业项目排行


快乐暑假作文-创业项目排行


快乐暑假作文-创业项目排行


快乐暑假作文-创业项目排行


快乐暑假作文-创业项目排行