四年级数学高斯求和讲解

绝世美人儿
863次浏览
2021年02月27日 21:23
最佳经验
本文由作者推荐

-

2021年2月27日发(作者:办不到的承诺就成了枷锁)



四年级数学高斯求和讲解





德国著名数学家高斯幼年时代聪明 过人,


上学时,


有一天老师出了一


道题 让同学们计算:





1



2


3



4


+…+

99



100


=?





老师出完题后,


全班同学都在埋头计算,


小高斯却很快算出答案等于

< br>5050


。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:





1



100



2



99



3



98


=…=


49

< p>


52



50

< p>


51






1



100


正好可以分成这样的


50

< p>
对数,每对数的和都相等。于是,小


高斯把这道题巧算为

< br>





1+100


)×


100


÷

< p>
2



5050






小高斯使用的这 种求和方法,


真是聪明极了,


简单快捷,


并且广泛地


适用于“等差数列”的求和问题。





若干个数排成一列称为

< p>
数列



数列中的每一个数称为一项,


其中第一


项称为


首项



最后一项称为


末项



后项与前项之差都相等的数列称为


等差


数列

< br>,后项与前项之差称为


公差


。例如:





1



1



2< /p>



3



4



5


,…,


100< /p>







2



1

< p>


3



5



7



9

,…,


99







3



8



15



22



29



36


,…,


71< /p>






其中(


1


)是首项为


1


,末项为


100


,公差为

< p>
1


的等差数列;(


2


)是


首项为


1


,末项为

99


,公差为


2


的等差数列;(< /p>


3


)是首项为


8


,末项为


71


,公差为


7


的等差数列。





由高斯的巧算方法,得到


等差数列的求和公式





=


(首 项


+


末项)×项数÷


2





1

< br>1



2



3


+…+


1999


=?



分析与解


:这串加数


1< /p>



2



3


,…,


1999


是等差数列,首项是


1


,末项是


1999


, 共有


1999


个数。由等差数列求和公式可得

< br>




原式

=



1



1999


)×


1999


÷


2



1999000





1 / 4





注意:


利 用等差数列求和公式之前,


一定要判断题目中的各个加数是


否构 成等差数列。




2


11



12



13


+…+


31


=?



分析与解


:这串加数


11



12



13


,…,


31


是等差数列,首项是< /p>


11


,末项



3 1


,共有


31-11



1



21


(项)。

< p>




原式


=



11+31


)×


21


÷


2=441






在利用 等差数列求和公式时,


有时项数并不是一目了然的,


这时就需< /p>


要先求出项数。根据首项、末项、公差的关系,可以得到



项数


=


(末项


-


首项)÷公差


+1




末项


=


首项


+


公差×(项数


-1






3


3



7


11


+…+


99


=?



分析与解



3

< p>


7



11


,…,


99


是公差为


4


的等差数列,





项数


=



99



3


)÷


4< /p>



1



25






原式


=



3

< p>


99


)×


25


÷


2



1275





4


求首项是


25


,公差是


3


的等差数列的前


40


项的和。




:末项


=25< /p>



3


×(


40- 1


)=


142







=



25



14 2


)×


40


÷


2



3340






利用等差数列求和公式及求项 数和末项的公式,


可以解决各种与等差


数列求和有关的问题。< /p>




5


在下图 中,每个最小的等边三角形的面积是


12


厘米

< br>2


,边长是


1



火柴棍。问:



1


)最大三角 形的面积是多少平方厘米?(


2


)整个图形由

< br>多少根火柴棍摆成?





2 / 4

-


-


-


-


-


-


-


-