2019版小学数学课程标准修订稿(最新)
-
2011
版小学数学课程标准修订稿
目
录
第一部分
前
言
<
/p>
........................................
..........
1
第二部分
课程目标
............
.....................................
5
一、总体目标
.....................
..............................
5
二、学段目标
.....................
..............................
6
第三部分
内容标准
............
................................
- 15
-
第一学段(
1-3
年级)
.
........
...................................
8
一、
数与代数
................................................
8
二、
图形与几何
..............................................
9
三、
统计与概率
..............................................
9
四、
综合与实践
..............................................
9
第二学段(
4-6
年级)
.
< br>..........................................
10
一、
数与代数
...............................................
10
二、
图形与几何
.............................................
11
三、
统计与概率
.............................................
12
四、
综合与实践
.............................................
13
第四部分
实施建议
............
...................................
14
一、教学建议
..................................................
14
二、评价建议
..................................................
19
三、教材编写建议
..............................................
27
四、课程资源开发与利用建议
....................................
32
附录
1
课程目标的术语解释
........................................
34
附录
2
内容标准及教学建议中的案例
...................................
2011
版小学数学课程标准修订稿
第一部分
前
言
数学是研究数量关系和空间形式的科学。
数学与人类发展和
社会进步息息相关,
特别是随着现代信息
技术的飞速发展,
数学
更加广泛应用于社会生产和日常生活的各
个方面。
数学作为对于
客观现象抽象概括
而逐渐形成的科学语言与工具,
不仅是自然科学和技术科学
的基础,而且在人文科学与社会科学中发挥着越来越大的作用。
数学是人类文化的重要组成部分,
数学素养是现代社会每一
p>
个公民应该具备的基本素养。
作为促进学生全面发展教育的重要
p>
组成部分,
数学教育既要使学生掌握现代生活和学习中所需要的
p>
数学知识与技能,
更要发挥数学在培养人的理性思维和创新能力
p>
方面的不可替代的作用。
一、课程性质
义务教育阶段的数学课程是培养公民素质的基础课程,
具有
基础性、
普及性和发展性。
数学的抽象性、
严谨性和应用广泛性,
决定了数学课程在义务教育阶段的独特作用。
义务教育的数学课程是学生未来生活、
工作和学习的
重要基
础。
数学课程有助于学生掌握必备的基础知识和基本技能
;
有助
于培养学生的抽象思维和推理能力;
有助于培养学生的创新意识
- 1 -
2011
版小学数学课程标准修订稿
和实践能力;
有助于学生在情感、
态度
与价值观等方面得到发展。
二、课程基本理念
1
.数学课程应致力于实现义务教育阶段的培养目标,要面
向全体学生,适应学生个性发展的需要,使得:人人都能获得良
好的数学教育,不同
的人在数学上得到不同的发展。
2
.
课程内容既要反映社会的需要、数学的特点,也要符合
学生的认知规律。
它不仅包括数学的结果,
也包括数学结果的形
成过程和
数学思想方法。
课程内容的选择要贴近学生的实际,
有
利于学生体验与理解、
思考与探索。
课程内容的
组织要处理好过
程与结果的关系,
直观与抽象的关系,
直接经验与间接经验的关
系。课程内容的呈现应注意层次性和多样性。<
/p>
3
.教学活动是师生积极参与、
交往互动、共同发展的过程。
有效的教学活动是学生学与教师教的统一
,学生是学习的主体,
教师是学习的组织者、引导者与合作者。
数学教学活动应激发学生兴趣,
调动学生积极性,
引发学生
的数学思考,
鼓励学生的创造性思维;
p>
要注重培养学生良好的数
学学习习惯,使学生掌握恰当的数学学习方
法。
学生学习应当是一个生动活泼的、主动的和富有个性的过
程。除接受学习外,动手实践、自主探索与合作交流同样是学习
数学的重要方式。
学生应当有足够的时间和空间经历观察、
实验
、
猜测、计算、推理、验证等活动过程。
- 2 -
2011
版小学数学课程标准修订稿
教师教学应该以学生的认知发展水平和已有的经验为基础,
面向
全体学生,注重启发式和因材施教。教师要发挥主导作用,
处理好讲授与学生自主学习的
关系,
引导学生独立思考、
主动探
索、
合作交流,使学生理解和掌握基本的数学知识与技能、
数学
思想
和方法,获得基本的数学活动经验。
4
.学习评价的主要目的是为了全面了解学生数学学习的过
程和结果,激励学生学习和改
进教师教学。
应建立目标多元、
方
法多
样的评价体系。
评价既要关注学生学习的结果,
也要重视学
p>
习的过程;
既要关注学生数学学习的水平,
也要重视学生在数学
活动中所表现出来的情感与态度,
帮助学生
认识自我、
建立信心。
5
.信息技术的发展对数学教育的价值、目标、内容以及教
学方式产生了很大
的影响。
数学课程的设计与实施应根据实际情
况合理地运用现代
信息技术,要注意信息技术与课程内容的整
合,
注重实效。
p>
要充分考虑信息技术对数学学习内容和方式的影
响,
开发并向学生提供丰富的学习资源,
把现代信息技术作为学
生学习数学和解决问题的有力工具,有效地改进教与学的方式,
使学生乐意并有可能
投入到现实的、探索性的数学活动中去。
三、课程设计思路
义务教育阶段数学课程的设计,
充分考虑本阶段学生数学学
习的特点,
符合学生的认知规律和心理特征,
有利于激发学
生的
学习兴趣,引发数学思考;
充分考虑数学本身的特点,
p>
体现数学
- 3 -
2011
版小学数学课程标准修订稿
的实质;
在呈现作为知识与技能的数学结果的同时,
重视学生已
有的经验,
使学生体验从实际背景中抽
象出数学问题、
构建数学
模型、寻求结果、解决问题的过程。<
/p>
(一)
关于学段
为了体现义务教育数学课程
的整体性,
统筹考虑九年的课程
内容。同时,根据学生发展的生
理和心理特征,将九年的学习时
间划分为三个学段:
第一学段<
/p>
(
1-3
年级)
、
第二学段
(
4-6
< br>年级)
、
第三学段(
7-9
p>
年级)
。
(二)
关于目标
义务教育阶段数学课程目标
分为总体目标和学段目标,
从知
识技能、数学思考、问题解决、
情感态度等四个方面加以阐述。
数学课程目标包括结果目标和
过程目标。
结果目标使用
“了
解、理解
、掌握、运用”等术语表述,过程目标使用“经历、体
验、探索”等术语表(术语解释见
附录
1
)
。
(三)
关于课程内容
在各学段中,
安排了四个部分的课程内容:
“数与代数”
,<
/p>
“图
形与几何”
,
“统计与概率”
,
“综合与实践”
。
“综合与实践”内
容设置的目的在于
培养学生综合运用有关的知识与方法解决实
际问题,培养学生的问题意识,应用意识和创
新意识,
积累学生
的活动经验,提高学生解决现实问题的能力。
数与代数的主要内容有:数的认识,数的表示,数的大小,<
/p>
数的运算,数量的估计;字母表示数,代数式及其运算;方程、
- 4 -
2011
版小学数学课程标准修订稿
方程组、不等式、函数等。
图形与几
何主要内容有:
空间和平面基本图形的认识,
图形
的性质、
分类和度量;
图形的平移、
旋转、
轴对称、
相似和投影;
平面图形基本性质的证明;运用坐标描述图形的位置和运动。
统计与概率主要内容有:收集、整理和描述数据,
包括简单
抽样
、整理调查数据、绘制统计图表等;处理数据,包括计算平
均数、中位数、众数、极差、
方差等;从数据中提取信息并进行
简单的推断;简单随机事件及其发生的概率。
综合与实践是一类以问题为载体、
以学生自主
参与为主的学
习活动。
在学习活动中,
学生将综合运用数与代数、
图形与几何、
统计与概率等知识和方
法解决问题。
“综合与实践”的教学活动
应当保证每学期至少一
次,
可以在课堂上完成,
也可以课内外相
结合。
在数学教学中,
应当注重发展学生的
数感、
符号意识、
空间
观念、几何直观、数据分析观念、运算能力、推理能力和模型思
p>
想。
数感主要
是指关于数与数量、
数量关系、
运算结果估计等方
面的感悟。
建立数感有助于学生理解现实生活中数的意义,
< br>理解
或表述具体情境中的数量关系。
符号意识主要是指能够理解并且运用符号表示数、
数量关系
- 5 -
2011
版小学数学课程标准修订稿
和变化规律;
知道使用符号可以进行运算和推理,
得到的结论具
有一般性。
建立符号意识有助于学生理
解符号的使用是数学表达
和进行数学思考的重要形式。
空间观念主要是指根据物体特征抽象出几何图形,
根据几何
图形想象出所描述的实际物体;
想象出物
体的方位和相互之间的
位置关系;
描述图形的运动和变化;
p>
依据语言的描述画出图形等。
几何直观主要是指利用图形描述和分析问题。
借助几何直观
可以把复杂的数学问题变得简明、
形象,
有助于探索
解决问题的
思路,预测结果。几何直观可以帮助学生直观地理解数学,
< br>在整
个数学学习过程中都发挥着重要作用。
数据分析观念包括:
了解在现实生活
中有许多问题应当先做
调查研究,收集数据,通过分析做出判断,
体会数据中蕴涵着信
息;
了解对于同样的数据可以有多种分析
的方法,
需要根据问题
的背景选择合适的方法;
通过数据分析体验随机性,
一方面对于
同样的事情每次
收集到的数据可能不同,
另一方面只要有足够的
数据就可能从中
发现规律。
运算能力主要是指能够
根据法则和运算律正确地进行运算
的能力。
培养运算能力有助于
学生理解运算的算理,
寻求合理简
洁的运算途径解决问题。
p>
- 6 -
2011
版小学数学课程标准修订稿
推理能力的发展应贯穿在整个数学学习过程中。
推理是数学
的基本思维方式,也是人们学习和生活中经常使用的思维方式。<
/p>
推理一般包括合情推理和演绎推理
,
合情
推理是从已有的事实出
发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推<
/p>
理是从已有的事实
(包括定义、
公理、<
/p>
定理等)
和确定的规则
(包
括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明
和计算。在解
决问题的过程中,合情推理用于探索思路,发现结
论;演绎推理用于证明结论。
模型思想的建立是学生体会和理解数学与外
部世界联系的
基本途径。
建立和求解模型的过程包括:
从现实生活或具体情境
中抽象出数学问题,
用数
学符号建立方程、
不等式、
函数等表示
数学问题中的数量关系和变化规律,
求出结果、
并讨论结果的意
义。
这些内容的学习有助于学生初步形成模型思想,
提高学习数
学的兴趣和应用意识。
为了适应时代发展对人才培养的需要,
义务教育阶段的数学
教育要特别注重发展学生的
应用意识
p>
和
创新意识
。
应用意识
有两个方面的含义,一方面
有意识利用数学的概
念、原理和方法解释现实世界中的现象,解决现实世界中问题;
p>
另一方面,
认识到现实生活中蕴含着大量与数量和图形有关的问
p>
- 7 -
2011
版小学数学课程标准修订稿
题,这些问题可以抽象成数学问题,
用数学的方法予以解决。<
/p>
在
整个数学教育的过程中都应该培养学生的应用意识,
综合实践活
动是培养应用意识很好的载体。
创新意识
的培养是现代数学教育的基
本任务,
应体现在数学
教与学的过程之中。
学生自己发现和提出问题是创新的基础;
独
立思考、学会思
考是创新的核心;
归纳概括得到猜想和规律,
并
加以验证,
是创新的重要方法。
创新意识的培养应该从
义务教育
阶段做起,贯穿数学教育的始终。
- 8 -
2011
版小学数学课程标准修订稿
第二部分
课程目标
一、总体目标
通过义务教育阶段的数学学习,学生能:
1.
获得适应社会生活和进一步发展所必需的数学的基础知<
/p>
识、基本技能、基本思想、基本活动经验。
2.
体会数学知识之间、数学与其他学科之间、数学与生活<
/p>
之间的联系,
运用数学的思维方式进行思考,
增强发现和提出问
题的能力、分析和解决问题的能力。
3.
了解数学的价值,提高学习数学的兴趣,增强学好数学<
/p>
的信心,
养成良好的学习习惯,
具有初步
的创新意识和实事求是
的科学态度。
总体目标从以下四个方面具体阐述:
●经历数与代数的抽象、运算与建模等过程,掌握数与代数的
基础知识和基本技能。
p>
知
●经历图形的抽象、
< br>分类、
性质探讨、
运动、
位置确
定等过程,
识
掌握图形与几何的基础知识和基本技能。
技
●经历在实际问题中收集和处理数据、利用
数据分析问题、获
能
取信息的过程,掌握统计与概率的基础知识和基本技能。
p>
●参与综合实践活动,积累综合运用数学知识、技能和方法等
解决简
单问题的数学活动经验。
数
●建立数
感、符号意识和空间观念,初步形成几何直观和运算
学
能力,发
展形象思维与抽象思维。
- 9
-
2011
版小学数学课程标准修订稿
思
●体会统计方法的意义,发展数据分析观念,感受随机现象。
考
●在参
与观察、实验、猜想、证明、综合实践等数学活动中,
发展合情推理和演绎推理能力,清
晰地表达自己的想法。
●学会独立思考,体会数学的基本思想和思维方式。
●初步学会从数学的角度发现问题和提出问题,
综合运用数学
问
知识解决简单的实际问题,增强应用意识,提高实践能力。
题
●获得分析问题和解
决问题的一些基本方法,
体验解决问题方
解
法的多样性,发展创新意识。
决
●学会与他人合作交流。
●初步形成评价与反思的意识。
情<
/p>
●积极参与数学活动,对数学有好奇心和求知欲。
感
●在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的
态
意志,建立自信心。
度
●体会数学的特点,了解数学的价值。
●养成认真勤奋、
独立思考、
合作交流、
反思质疑等学习习惯,
形成实事求是的科学态度。
总体目标的这四个方面,
不是互相独立和割裂的,
而是一个
密切联系、
相互交融的有机整体。
在课程设计和教学活动组织中,
应同时兼顾这四个方面的目标。
这些目标的整体实现,
是学生受
到良好数学教育的标志
,它对学生的全面、
持续、
和谐发展有着
重要的意义。数学思考、问题解决、
情感态度的发展离不开知识
技能的学习,知识技能的学习必须有利于其他三个目标的实现。
- 10 -
2011
版小学数学课程标准修订稿
二、学段目标
第一学段(
1-3
< br>年级)
知识技能
1
.经历从日常生活中抽象出数的过程,理解万以内数的意
义,
初步认识分数和小数;
理解常见的量;
体会四则运算的意义,
掌握必要的运算技能;在具体情境中,能进行简单的
估算。
2
.
经历从实际物体中抽象出简单几何体和平面图形的过程,
了解一些简单几何体和常见的平
面图形;感受平移、
旋转、轴对
称现象;认识物体的相对位置。
掌握初步的测量、
识图和画图的
技能。
3
.经历简单的数据收集、整理、分析的过程,了解简单的
p>
数据处理方法。
数学思考
1
.
在运用数及适当的度量单位描述现实生活中的简单现象,
以及
对运算结果进行估计的过程中,
发展数感;
在从物体中抽象
p>
出几何图形、想像图形的运动和位置的过程中,发展空间观念。
2
.能对调查过程中获得的简单数据进行归类,体验数据中
p>
蕴涵着信息。
3.
在观察、操作等活动中,能提出一些简单的猜想。
4
.会独立思考问题,表达自己的想法。
问题解决
- 11 -
2011
版小学数学课程标准修订稿
1
.能在教师的指导下,从日常生活中发现和提出简单的数
p>
学问题,并尝试解决。
2
.了解分析问题和解决问题的一些基本方法,知道同一个
问题可以有不同的解决
方法。
3
.体验与他人合作交流解决
问题的过程。
4
.尝试回顾解决问题的过程。
情感态度
1
.对身边与数学有关的事物有好奇心,能参与数学活动。
2<
/p>
.在他人帮助下,感受数学活动中的成功,能尝试克服困
难。
p>
3
.了解数学可以描述生活中的一些现象
,感受数学与生活
有密切联系。
4<
/p>
.能倾听别人的意见,尝试对别人的想法提出建议,知道
应该尊重
客观事实。
第二学段(
4-6
年级)
知识技能
1
.体验从具体情境中抽象出数的过程,认识万以上的数;
理解分数、小数、百分数的意义
,了解负数;掌握必要的运算技
能;理解估算的意义;能用方程表示简单的数量关系,<
/p>
能解简单
的方程。
2
.探索一些图形的形状、大小和位置关系,了解一些几何
体和平面图形的基本特征;
体验简单图形的运动过程,
能在方格
- 12 -
2011
版小学数学课程标准修订稿
纸上画出简单图形运动后的图形,
了解确定物体位置的一些基本
方法;掌握测量、识图和画图的基本方法。
< br>3
.经历数据的收集、整理和分析的过程,掌握一些简单的
数据处理技能;体验随机事件和事件发生的等可能性。
4<
/p>
.能借助计算器解决简单的应用问题。
数学思考
1
.
初步形成数感和空间观念,
感受符号和几何直观的作用。
p>
2
.进一步认识到数据中蕴含着信息,发
展数据分析观念;感受随
机现象。
3
.在观察、实验、猜想、验证等活动中,发展合情推理能力,能
进行有条理的思考,能比较清楚地表达自己的思考过程与结果。
4.
会独立思考,体会一些数学的基本思想。
问题解决
1
.尝试从日常生活中发现并提出简单的数学问题,并运用
一些知识加以解决。
2
.能探索分析和解决简单问题的有效方法,了
解解决问题
方法的多样性。
3
.经历与他人合作解决问题的过程,尝试解释自己的思考
过程。
4
.能回顾解决问题的过程,初步判断结果
的合理性。
情感态度
1
.愿意了解社会生活中与数学相关的信息,主动参与数学
< br>学习活动。
- 13 -
2011
版小学数学课程标准修订稿
2
.在他人的鼓励和引导下,体验克服困难、解决问题的过
p>
程,相信自己能够学好数学。
3
.在运用数学知识和方法解决问题的过程中,认识数学的
价值。
4
.初步养成乐于思考、勇于质疑、实事求是
等良好品质。
- 14 -
2011
版小学数学课程标准修订稿
第三部分
内容标准
第一学段(
1-3
年级)
一、
数与代数
(一)
数的认识
1.
在现实情境中理解万以内数的意义,能认、读、写万以<
/p>
内的数,能用数表示物体的个数或事物的顺序和位置。
2.
能说出各数位的名称,
理解各数
位上的数字表示的意义;
知道用算盘可以表示多位数。
(参见例
1
)
3.
理解符号<,=,>的含义,能用符号和词语描述万以
内数的大
小(参见例
2
)
。
4.
在具体情境中感受大数的意义,并能进行估计(参
见例
3
)
。
5.
能结合具体情境初步认识小数和分数,能读、写小数和<
/p>
分数。
6.
能结合具体情境比较两个一位小数的大小,能比较两个
同分母分数的大小。
7.
能运用数表示日常生活中的一些事物,并进
行交流(参
见例
4
)
< br>。
(二)
数的运算
1.
结合具体情境,体会整数四则运算的意义(参见例
5
)
。
- 15 -
2011
版小学数学课程标准修订稿
2.
能熟练地口算
20
以内的加减法和表内乘除法,
能口算百
以内的加减法
和一位数乘除两位数。
3.
能计算
三位数的加减法,一位数乘三位数、两位数乘两
位数的乘法,三位数除以一位数的除法。
4
.能进行简单的整数四则混合运算
(两步)
。
5.
< br>会进行同分母分数
(
分母小于
1
0)
的加减运算以及一位小
数的加减运算。
6.
能结合具体情境进行估算,并解释估算的过程(参
见例
6
)
。
7.
经历与他人交流各自算法的过程。
8.
能运用数及数的运算解决生活中的简单问题,并能对结<
/p>
果的实际意义作出解释(参见例
7
)
p>
。
(三)
常见的量
1.
在现实情境中,认识元、角、分,并了解它们之间的关<
/p>
系。
2.
能
认识钟表,了解
24
时记时法;结合自己的生活经验,
体验时间的长短(参见例
8
)
< br>。
3.
认识年、月、日,了解它们之间的关系。
4.
在现实情境中,感受并认识克、千克、吨,能进行简单<
/p>
的单位换算。
5.
结合生活实际,解决与常见的量有关的简单问题。
- 16 -
2011
版小学数学课程标准修订稿
(四)
探索规律
探索简单的变化规律(参见例
9
、例
10
)
。
二、
图形与几何
(一)
图形的认识
1.
能通过实物和模型辨认长方体、正方体、圆柱和球等几<
/p>
何体。
2.
能根据具体事物、照片或直观图辨认从不同角度观察到
的简单物体(参见例
11
)
。
3.
辨认长方形、正方形、三角形、平行四边形、圆等简单<
/p>
图形。
4.
通过观察、操作,初步认识长方形、正方形的特征。
5.
会用长方形、正方形、三角形、平行四边形或圆拼图。
6.
结合生活情境认识角,了解直角、锐角和钝角。
7.
能对简单几何体和图形进行分类(参见例
21
)
。
(二)
测量
1.
结合生活实际,经历用不同方式测量物体长度的过程,<
/p>
体会建立统一度量单位的重要性。
2.
在实践活动中,体会并认识长度单位千米、米、厘米,
知道分米
、毫米,能进行简单的单位换算,
能恰当地选择长度单
位(参见
例
12
)
。
3.
能估测一些物体的长度,并进行测量。
- 17 -
2011
版小学数学课程标准修订稿
4.
结合实例认识周长,并能测量简单图形的周长(参见例<
/p>
13
)
,探索并掌握长方形、正方形的周
长公式。
5.
结合实例认识面积,
体会并认识面积单位厘米
、
分米
、
米
,能进行简单的单位换算。
6.
探索并掌握长方形、正方形的面积公式,能
估计给定简
单图形的面积(参见例
14
)
。
(三)
图形的运动
1.
结合实例,感知平移、旋转、轴对称现象(参见例
15
)
。
2.
能辨认简单图形平移后的图形(参见例
< br>16
)
。
3.
通过观察、操作,认识轴对称图形。
(四)
图形与位置
1.
会用上、下,左、右,前、后描述物体的相对位置。
2.
给定东、南、西、北四个方向中的一个方向,能辨认其<
/p>
余三个方向,知道东北、西北、东南、西南四个方向,能用这些
词
语描绘物体所在的方向(参见例
17
)
。
三、
统计与概率
1.
能根据给定的标准或者自己选定的标准,对事物或数据<
/p>
进行分类,感受分类与分类标准的关系(参见例
18
)
。
2.
经历简单的数据收集和整理过程,了解调查、测量等收
集数据的简单方法,并
运用自己的方式(文字、图画、表格等)
- 18 -
p>
2
2
2
2011<
/p>
版小学数学课程标准修订稿
呈现整理数
据的结果(参见例
19
)
。
3.
通过对数据的简单分析,体会运用数据进
行表达与交流
的作用,感受数据蕴涵信息(参见例
20
)
。
四、
综合与实践
1
.通过实践活动,获得初步的数学活动经验,感受数学在
日常生活中的作用,
体验能够运用所学的知识和方法解决简单问
题。
2.
在实践活动中,明确要解决
的问题和解决问题的办法。
3.
经历
实践操作的过程,进一步理解所学的内容。
(参见例
21
< br>,例
22
,例
23
)
第二学段(
4-6
年级)
一、
数与代数
(一)
数的认识
1.
在具体情境中,认识万以上的数,了解十进制计数法,会
用万、亿为单位表示大数。
2. <
/p>
结合现实情境感受大数的意义,并能进行估计(参见例
24
)。
3.
会运用
数描述事物的某些特征,
进一步体会数在日常生活
中的作用(参
见例
25
)。
- 19 -
2011
版小学数学课程标准修订稿
4.
知道
2
,
3
,
5
的倍
数的特征,了解公倍数和最小公倍数;
在
1-100
的自然数中,能找出
10
以内自然数的所有倍数,
能找
出
10
以内两个自然数的公倍数和
最小公倍数。
5.
了解公因数和最
大公因数;在
1-100
的自然数中,能找出
< br>一个自然数的所有因数,
能找出两个自然数的公因数和最大公因
< br>数。
6.
了解自然数、整数,奇数和偶数,质(素)数和合数。
7.
结合具体情境,理解小数和分数的意义
< br>,
理解百分数的意
义(参见例
2
6
);会进行小数、分数和百分数的转化
(
不包括将
循环小数化为分数
)
。<
/p>
8.
能比较小数的大小和分数的大小。
9
.在熟悉的生活情境中,了解负数的意义,会用负数表示日
常生
活中的一些量。
(二)
数的运算
1
.能笔算三位数乘两位数的乘法,三位数除以两位数的除
法。
2
.
认
识中括号,
能进行简单的整数四则混合运算
(
< br>以两步为
主,不超过三步
)
。<
/p>
3
.探索并了解运算律(加法的交换律
和结合律、乘法的交
换律和结合律、乘法对加法的分配律)
,<
/p>
会应用运算律进行一些
简便运算。
- 20 -
2011
版小学数学课程标准修订稿
4
.
在具体运算和解决简单实际问题的
过程中,
体会加与减、
乘与除的互逆关系。
5
.能分别进行简单的小数、分数
(
不含带分数
)
加、减、乘、
除运算及混合运算
(
以两步为主,不超过三步
)
。
6
p>
.能解决小数、分数和百分数的简单实际问题。
< br>7.
在具体情境中,
了解常见的数量关系:
总价
=
单价×数量、
路程<
/p>
=
速度×时间,并能解决简单的实际问题。
8
.
经历与他人交流各自算法的过
程,
并能表达自己的想法。
9
.在解决问题的过程中,能选择合适的方法进行估算(参
见例
27
、例
28
)。
p>
10
.能借助计算器进行运算,
解决简单的实际问题,
探索简
单的规律(参见
例
29
)。
(三)
式与方程
1
.在具体情境中会用字母表示数。
2
.结合简单的实际情境,了解等量关系,并能用字母表示。<
/p>
3.
能用方程表示简单情境中的等量
关系
(
如
3
x
+2
=
5
,<
/p>
2
x
-
x
=
3)
,了解方程的作用。
< br>
4
.了解等式的性质,能用等式的性质解简单的方程。
(四)
正比例、反比例
1
.在实际情境中理解比及按比例分配的含义,并能解决简
< br>单的问题。
- 21 -
2011
版小学数学课程标准修订稿
2
.通过具体情境,认识成正比例的量和成反比例的量。
3
.能根据给出的有正比例关系的数据在方
格纸上画图,并
根据其中一个量的值估计另一个量的值(参见例
30
)。
4
.能找出生活中成正比例和成反比例关系量的实例,并进
行交流。
(五)
探索规律
探求给定情境中隐含的规律或变化趋势
(参见例
31
、
例
32
)
。
二、
图形与几何
(一)
图形的认识
1
.结合实例了解线段、射线和直线。
2
.体会两点间所有连线中线段最短,知道两点间的距离。
p>
3
.知道平角与周角,了解周角、平角、
钝角、直角、锐角
之间的大小关系。
4
.结合生活情境了解平面上两条直线的平行和相交(包括
垂直
)关系。
5
.通过观察、操作,认识
平行四边形、梯形和圆;知道扇
形,会用圆规画圆。
6
.认识三角形,通过观察、操作,了解三角形两边之和大
于第三边、三角形内角和是
180°。
7
.认识等腰三角形、等边三角形、直角三角形、锐角三角
形、钝角三角形。
-
22 -
2011
版小学数学课程标准修订稿
8
.能辨认从不同方向(前面、侧面、上面)看到的物体的
p>
形状图(参见例
33
)。
< br>
9
.通过观察、操作,认识长方体、正方体、圆柱和圆
锥,
认识长方体、正方体和圆柱的展开图。
(二)
测量
1
.能用量角器量指定角的度数,能画指定度数的角,会用
p>
三角尺画
30°,45°,60°,90°角。
2
.探索并掌握三角形、平行四边形和梯形的面积公式,
并
能解决简单的实际问题。
3
.知道面积单位:千米
、公顷。
4
.通过操作,了解圆的周长与直径的比为定值,掌握圆的
周长公式;
探索并掌握圆的面积公式,
并能解决简单的
实际问题。
5
.会用方格纸估计不规
则图形的面积(参见例
34
)
。
6
.通过实例了解体积(包括容积)的意义
及度量单位(米
3
2
、分米
、厘米
、升、毫升)
,能进行单位之间的换算,感
受
1
3
3
3<
/p>
3
米
、
1
厘米
以及
1
升、
p>
1
毫升的实际意义。
7
.结合具体情境,探索并掌握长方体、正方体、圆柱的体
积和表面积以及圆锥体积的计算方法,并能解决简单的实际问
题。
8
.
体验某些实物
(如土豆等)
体积的测量方法
(参见例
35
)
。
(三)
图形的运动
- 23 -
2011
版小学数学课程标准修订稿
1
.通过观察、操作等活动,进一步认识轴对称图形及其对
p>
称轴,
能在方格纸上画出轴对称图形的对称轴;
能在方格纸上补
全一个简单的轴对称图形。
2
.通过观察、
操作等,
在
方格纸上认识图形的平移与旋转,
能在方格纸上按水平或垂直方向将简单图形平移,
p>
能在方格纸上
将简单图形旋转
90°(参见
例
36
)
。
3
.能利用方格纸按一定比例将简单图形放大或缩小。
4
.能从平移、旋转和轴对称的角度欣赏生活
中的图案,并
运用它们在方格纸上设计简单的图案。
(四)
图形与位置
< br>1
.了解比例尺;在具体情境中,会按给定的比例进行图上
距离与实际距离的换算。
2
.能根
据物体相对于参照点的方向和距离确定其位置。
3
.会描述简单的路线图(参见例
37
)
。
4
.在具体情境中,
能在方格纸上用数对表示位置,知道数
对(限于正整数)与方格纸上点的对应(参见例<
/p>
38
)
。
三、
统计与概率
(一)
简单数据统计过程
1
.经历简单的收集、整理、描述和分析数据的过程(可使
用计算器)
。
2
.会根据实际问题设计简单的调查表,能选择适当的方法
- 24 -
2011
版小学数学课程标准修订稿
(如调查、试验、测量)收集数据。
3
.认识条形统计图、扇形统计图、折线统计图;能选择条
形统
计图、折线统计图直观、有效地表示数据(参见例
39
)
。
4
.体会平均数
的作用,能计算平均数,能用自己的语言解
释其实际意义(参见例
39
)
。
5
.能从报刊杂志、电视等媒体中,有意识地获得一些数据
信息
,并能读懂简单的统计图表(参见例
40
)
。
6
.能解释统计结果,根据结
果作出简单的判断和预测,并
能进行交流(参见例
39
和例
41
)
。
(二)
随机现象发生的可能性
1
.结合具体情境,了解简单的随机现象;能列出简单的随
机现象中所有可能发生的结果(参见例
42
)
p>
。
2
.通过实验
、游戏等活动,感受随机现象结果发生的可能
性是有大小的,
能
对一些简单的随机现象发生的可能性大小作出
定性描述,并和同学交流(参见例
42
)
。
四、
综合与实践
1.
经历有目的、有设计、有步骤、有合作的实践活动。
2
.结合实际情境,体验发现和提出问题、分析和解决问题的
过程。
3
.在给定目标
下,初步体验针对具体问题提出设计思路、
制定简单的方案解决问题的过程。
- 25 -
2011
版小学数学课程标准修订稿
4.
通过应用和反思,加深对所用知识和方法的理解,了解<
/p>
所学知识之间的联系,积累数学活动经验。
(参见例
43
、例
44
、例
45
、例
46
)
- 26 -
2011
版小学数学课程标准修订稿
第四部分
实施建议
一、教学建议
教学活动是师生积极参与、交往互动、共同发展的过程。
p>
数学教学应根据具体的教学内容,注意使学生在获得间接经
验的同时
也能够有机会获得直接经验,
即从学生实际出发,
创设
有助于学生自主学习的问题情境,
引导学生通过实践、
< br>思考、
探
索、交流等,获得数学的基础知识、基本技能、
基本思想、基本
活动经验,促使学生主动地、富有个性地学习
,
不断提高发现问
题和提出问题的能力、分析问题和解决问题的能
力。
在数学教学活动中,教师要把基本理念转化为自己的教学
行
为
,
处理好教师讲授与学生自主学
习的关系,注重启发学生积极
思考;发扬教学民主,当好学生数学活动的组织者、引导者
、合
作者;激发学生的学习潜能,
鼓励学生大胆创新与实践;创
造性
地使用教材,积极开发、利用各种教学资源,
为学生提供丰
富多
彩的学习素材;
关注学生的个体差异,
有效地实施有差异的教学,
使每个学生都得到充分的发展;
合理地运用现代信息技术,
有条
件的地区,要尽可能合理、
p>
有效地使用计算机和有关软件,
提高
教学效
益。
1
.数学教学活动要注重课程目标的整体实现
< br>
为使每个学生都受到良好的数学教育,数学教学不仅要使学
- 27 -
2011
版小学数学课程标准修订稿
生获得数学的知识技能,而且要把“知识技能”
、
“数学思考”
、
“问题解决”
、
“情感态度”
四个方面目标有机结合,
整体实现课
程目标。
课程目标的
整体实现需要日积月累。在日常的教学活动中,
教师应努力挖掘教学内容中可能蕴涵的、
与上述四个方面目标有
关的教育价值,
通过长期的教学过程,
逐渐实现课程的整体目标。
因此,
无论是设计、
实施课堂教学方案,
还是组织各
类教学活动,
不仅要重视学生获得知识技能,
而且要激发学生的
学习兴趣,
通
过独立思考或者合作交流感悟数学的基本思想,<
/p>
引导学生在参与
数学活动的过程中积累基本经验,
帮助学生形成认真勤奋、
独立
思考、合作交流、反思质
疑等良好的学习习惯。
例如,关于“零指数”教学方案的设计
可作如下考虑:教学
目标不仅要包括了解零指数幂的“规定”
、
会进行简单计算,还
要包括感受这个“规定”
的合理性,
并在这个过程中学会数学思
考、感悟理性精神(参见例
81
)
。
2
.重视学生在学习活动中的主体地位
有效的数学教学活动是教师教与学生学的统一,
应体现
“以
人为本”的理念,促进学生的全面发展。
(
1
)
学生是
数学学习的主体,
在积极参与学习活动的过程中
不断得到发展。
学生获得知识,
必须建立在自己思考
的基础上,
可以通过接
受学习的方式,
也可以通过自主探索等方式;
学生应用知识并逐
- 28 -
2011
版小学数学课程标准修订稿
步形成技能,
离不开自己的实践;
学生
在获得知识技能的过程中,
只有亲身参与教师精心设计的教学活动,
才能在数学思考、
问题
解决和情感态度方面得到发展(参见
例
82
)
。
(
2
)教师应成为学生学习活动的组织
者、引导者、合作者,
为学生的发展提供良好的环境和条件。
教师的“组织”作用主要体现在两个方面:第一,教师应当
准确
把握教学内容的数学实质和学生的实际情况,
确定合理的教
学目
标,设计一个好的教学方案。第二,在教学活动中,教师要
选择适当的教学方式,
因势利导、
适时调控、
努力营造师生互动、<
/p>
生生互动、生动活泼的课堂氛围,形成有效的学习活动。
教师的“引导”作用主要体现在:通过恰当的问题,或者准
确、清晰、
富有启发性的讲授,引导学生积极思考、求知求真,
激发学生的好奇心;通过恰当的归纳
和示范,使学生理解知识、
掌握技能、积累经验、感悟思想;能关注学生的差异,用不同
层
次的问题或教学手段,引导每一个学生都能积极参与学习活动
,
提高教学活动的针对性和有效性。
教师与学生的“合作”主要体现在:教师以平等、尊重的态
度鼓励学生积极参与教学活动
,
启发学生共同探索,
与学生一起
感受
成功和挫折、分享发现和成果。
(
3
)处理好学生主体地位和教师主导作用的关系。
好的教学活动,
应是学生主体地位和教师主导作用的和谐统
< br>一。一方面,学生主体地位的真正落实,依赖于教师主导作用的
有效发挥;另一方
面,有效发挥教师主导作用的标志,
是学生能
- 29 -
2011
版小学数学课程标准修订稿
够真正成为学习的主体,得到全面的发展(参见例
31
、例
52
)
。
实行启发式教学有助于落实学生的主体地位和发挥教师的
主导作用。教师富有启发性的讲授;创设情境、设计问题,引导
学生自主探索
、合作交流;组织学生操作实验、观察现象、提出
猜想、推理论证等,都能有效地启发学
生的思考,
使学生成为学
习的主体,逐步学会学习。
3
.注重学生对基础
知识、基本技能的理解和掌握
“知识技能”既是学生发展的基
础性目标,
又是落实
“数学
思考”
p>
、
“问题解决”
、
“情感态度”目标的载体。
(
1
p>
)
数学知识的教学,
应注重学生对所学知识
的理解,
体会
数学知识之间的关联。
学生掌握数学知识,
不能依赖死记硬背,
而应以理解为基础,
并在知识的应用中不断巩固和深化。
为了
帮助学生真正理解数学
知识,
教师应注重数学知识与学生生活经
验的联系、
与学生学科
知识的联系,组织学生开展实验、操作、
尝试等活动,引导学生
进行观察、分析,抽象概括,运用知识进行判断。教师还应揭示<
/p>
知识的数学实质及其体现的数学思想,
帮助学生理清相关知识之<
/p>
间的区别和联系等。
数学知识的教学,
要注重知识的“生长点”与“延伸点”
,
把每堂课教学的知识置
于整体知识的体系中,
注重知识的结构和
体系,
处理好局部知识与整体知识的关系,
引导学生感受数学的
整体性,
体会对于某些数学知识可以从不同的角度加以分析、
从
- 30 -
2011
版小学数学课程标准修订稿
不同的层次进行理解。
(
2
)
在基本技能的教学中,
不仅要使学生掌握技能操作的程
序和步骤,还要使学生理解程序和步骤的道理。例如,
对于整数
乘法计算,
学生不仅要掌握如
何进行计算,
而且要知道相应的算
理;对于尺规作图,学生不仅
要知道作图的步骤,
而且要能知道
实施这些步骤的理由。
基本技能的形成,需要一定量的训练,
但要
适度,
不能依赖
机械的重复操作,
要注
重训练的实效性。
教师应把握技能形成的
阶段性,根据内容的要
求和学生的实际,分层次地落实。
4
.引导学生积累数学活动经验、感悟数学思想
数学思想蕴涵在数学知识形成、
发展和应用的过程中,
是数
学知识和方法在更高层次上的抽象与概括,
如归纳、
p>
演绎、
抽象、
转化、分类、模型、数形结合
、随机等。学生在积极参与教学活
动的过程中,
通过独立思考、
合作交流,
逐步积累数学活动经验、
感
悟数学思想。
(
1
)
合理创设情境
教学中应当努力
创设源于学生生活的现实情境。
好的
“现实
情境”
,应当是学生熟悉的、简明的、有利于引向数学实质的、
真实或合理的。
此外,
教学中也
可以根据具体内容创设其他类型的情境,
包
括根据已有数学知识
创设的情境、已有其他学科知识创设的情
境。
- 31 -